Leading multi-stress tensors and conformal bootstrap

Abstract

Near lightcone correlators are dominated by operators with the lowest twist. We consider the contributions of such leading lowest twist multi-stress tensor operators to a heavy-heavy-light-light correlator in a CFT of any even dimensionality with a large central charge. An infinite number of such operators contribute, but their sum is described by a simple ansatz. We show that the coefficients in this ansatz can be determined recursively, thereby providing an operational procedure to compute them. This is achieved by bootstrapping the corresponding near lightcone correlator: conformal data for any minimal­ twist determines that for the higher minimal-twist and so on. To illustrate this procedure in four spacetime dimensions we determine the contributions of double- and triple-stress tensors. We compute the OPE coefficients; whenever results are available in the literature, we observe complete agreement. We also compute the contributions of double-stress tensors in six spacetime dimensions and determine the corresponding OPE coefficients. In all cases the results are consistent with the exponentiation of the near lightcone correlator. This is similar to the situation in two spacetime dimensions for the Virasoro vacuum block.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    A.B. Zamolodchikov, Irreversibility of the Flux of the Renormalization Group in a 2D Field Theory, JETP Lett.43 (1986) 730 [Pisma Zh. Eksp. Tear. Fiz.43 (1986) 565] [INSPIRE].

  2. [2]

    Z. Komargodski and A. Schwimmer, On Renormalization Group Flows in Four Dimensions, JHEP12 (2011) 099 [arXiv:1107.3987] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  3. [3]

    D.M. Hofman and J. Maldacena, Conformal collider physics: Energy and charge correlations, JHEP05 (2008) 012 [arXiv:0803.1467] [INSPIRE].

    ADS  Article  Google Scholar 

  4. [4]

    T. Hartman, S. Jain and S. Kundu, Causality Constraints in Conformal Field Theory, JHEP05 (2016) 099 [arXiv:1509.00014] [INSPIRE].

    ADS  Article  Google Scholar 

  5. [5]

    D. Li, D. Meltzer and D. Poland, Conformal Collider Physics from the Lightcone Bootstrap, JHEP02 (2016) 143 [arXiv:1511.08025] [INSPIRE].

    ADS  Article  Google Scholar 

  6. [6]

    Z. Komargodski, M. Kulaxizi, A. Parnachev and A. Zhiboedov, Conformal Field Theories and Deep Inelastic Scattering, Phys. Rev.D 95 (2017) 065011 [arXiv:1601.05453] [INSPIRE].

  7. [7]

    T. Hartman, S. Jain and S. Kundu, A New Spin on Causality Constraints, JHEP10 (2016) 141 [arXiv:1601.07904] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  8. [8]

    D.M. Hofman, D. Li, D. Meltzer, D. Poland and F. Rejon-Barrera, A Proof of the Conformal Collider Bounds, JHEP06 (2016) 111 [arXiv:1603. 03771] [INSPIRE].

  9. [9]

    T. Faulkner, R.G. Leigh, O. Parrikar and H. Wang, Modular Hamiltonians for Deformed Half-Spaces and the Averaged Null Energy Condition, JHEP09 (2016) 038 [arXiv:1605.08072] [INSPIRE].

  10. [10]

    M. Kologlu, P. Kravchuk, D. Simmons-Duffin and A. Zhiboedov, The light-ray OPE and conformal colliders, arXiv:1905.01311 [INSPIRE].

  11. [11]

    A.L. Fitzpatrick, J. Kaplan and M.T. Walters, Universality of Long-Distance AdS Physics from the CFT Bootstrap, JHEP08 (2014) 145 [arXiv:1403.6829] [INSPIRE].

    ADS  Article  Google Scholar 

  12. [12]

    A.L. Fitzpatrick, J. Kaplan and M.T. Walters, Virasoro Conformal Blocks and Thermality from Classical Background Fields, JHEP11 (2015) 200 [arXiv:1501.05315] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  13. [13]

    E. Hijano, P. Kraus and R. Snively, Worldline approach to semi-classical conformal blocks, JHEP07 (2015) 131 [arXiv:1501.02260] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  14. [14]

    E. Hijano, P. Kraus, E. Perlmutter and R. Snively, Semiclassical Virasoro blocks from AdS 3gravity, JHEP12 (2015) 077 [arXiv:1508.04987] [INSPIRE].

    ADS  MATH  Google Scholar 

  15. [15]

    A.L. Fitzpatrick, J. Kaplan, M.T. Walters and J. Wang, Hawking from Catalan, JHEP05 (2016) 069 [arXiv:1510.00014] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  16. [16]

    J. Cotler and K. Jensen, A theory of reparameterizations for AdS 3gravity, JHEP02 (2019) 079 [arXiv:1808.03263] [INSPIRE].

    ADS  Article  Google Scholar 

  17. [17]

    S. Collier, Y. Gobeil, H. Maxfield and E. Perlmutter, Quantum Regge Trajectories and the Virasoro Analytic Bootstrap, JHEP05 (2019) 212 [arXiv:1811.05710] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  18. [18]

    A.L. Fitzpatrick and J. Kaplan, Conformal Blocks Beyond the Semi-Classical Limit, JHEP05 (2016) 075 [arXiv:1512.03052] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  19. [19]

    A.L. Fitzpatrick, J. Kaplan, D. Li and J. Wang, On information loss in AdS 3/CFT 2, JHEP05 (2016) 109 [arXiv:1603. 08925] [INSPIRE].

  20. [20]

    T. Anous, T. Hartman, A. Rovai and J. Sonner, Black Hole Collapse in the 1/c Expansion, JHEP07 (2016) 123 [arXiv:1603.04856] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  21. [21]

    A.L. Fitzpatrick and J. Kaplan, On the Late-Time Behavior of Virasoro Blocks and a Classification of Semiclassical Saddles, JHEP04 (2017) 072 [arXiv:1609.07153] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  22. [22]

    H. Chen, C. Hussong, J. Kaplan and D. Li, A Numerical Approach to Virasoro Blocks and the Information Paradox, JHEP09 (2017) 102 [arXiv:1703.09727] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  23. [23]

    T. Faulkner and H. Wang, Probing beyond ETH at large c, JHEP06 (2018) 123 [arXiv:1712.03464] [INSPIRE].

    ADS  Article  Google Scholar 

  24. [24]

    C.T. Asplund, A. Bernamonti, F. Galli and T. Hartman, Holographic Entanglement Entropy from 2d CFT: Heav y States and Local Quenches, JHEP 02 (2015) 171 [arXiv:1410.1392] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  25. [25]

    P. Caputa, J. Simón, A. Štikonas and T. Takayanagi, Quantum Entanglement of Localized Excited States at Finite Temperature, JHEP01 (2015) 102 [arXiv:1410.2287] [INSPIRE].

    ADS  Article  Google Scholar 

  26. [26]

    B. Chen and J.-q. Wu, Holographic Entanglement Entropy For a Large Class of States in 2D CFT, JHEP09 (2016) 015 [arXiv:1605.06753] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  27. [27]

    B. Chen, J.-q. Wu and J.-j. Zhang, Holographic Description of 2D Conformal Block in Semi-classical Limit, JHEP10 (2016) 110 [arXiv:1609.00801] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  28. [28]

    T. Hartman, Entanglement Entropy at Large Central Charge, arXiv:1303.6955 [INSPIRE].

  29. [29]

    T. Faulkner, The Entanglement Renyi Entropies of Disjoint Intervals in AdS/CFT, arXiv:1303.7221 [INSPIRE].

  30. [30]

    M. Kulaxizi, G.S. Ng and A. Parnachev, Black Holes, Heavy States, Phase Shift and Anomalous Dimensions, SciPost Phys.6 (2019) 065 [arXiv:1812.03120] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  31. [31]

    M. Beccaria, A. Fachechi and G. Macorini, Virasoro vacuum block at next-to-leading order in the heavy-light limit, JHEP02 (2016) 072 [arXiv:1511.05452] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  32. [32]

    M. Kulaxizi, G.S. Ng and A. Parnachev, Subleading Eikonal, AdS/CFT and Double Stress Tensors, JHEP10 (2019) 107 [arXiv:1907.00867] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  33. [33]

    R. Rattazzi, V.S. Rychkov, E. Tonni and A. Vichi, Bounding scalar operator dimensions in 4D CFT, JHEP12 (2008) 031 [arXiv:0807.0004] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  34. [34]

    S. Rychkov, EPFL Lectures on Conformal Field Theory in D ≥ 3 Dimensions, SpringerBriefs in Physics Series, Springer, Cham Switzerland (2017) [arXiv:1601.05000] [INSPIRE].

  35. [35]

    D. Simmons-Duffin, The Conformal Bootstrap, in proceedings of the Theoretical Advanced Study Institute in Elementary Particle Physics: New Frontiers in Fields and Strings (TAS Boulder, CO, U.S.A., 1–26 June 2015, pp. 1–74 [arXiv:1602.07982] [INSPIRE].

  36. [36]

    D. Poland, S. Rychkov and A. Vichi, The Conformal Bootstrap: Theory, Numerical Techniques and Applications, Rev. Mod. Phys.91 (2019) 015002 [arXiv:1805.04405] [INSPIRE].

  37. [37]

    A.L. Fitzpatrick and K.-W. Huang, Universal Lowest-Twist in CFTs from Holography, JHEP08 (2019) 138 [arXiv:1903.05306] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  38. [38]

    Y.-Z. Li, Z.-F. Mai and H. Lü, Holographic OPE Coefficients from AdS Black Holes with Matters, JHEP09 (2019) 001 [arXiv:1905.09302] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  39. [39]

    A.L. Fitzpatrick, K.-W. Huang and D. Li, Probing universalities in d > 2 CFTs: from black holes to shockwaves, JHEP11 (2019) 139 [arXiv:1907.10810] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  40. [40]

    K.-W. Huang, Stress-tensor commutators in conformal field theories near the lightcone, Phys. Rev.D 100 (2019) 061701 [arXiv:1907.00599] [INSPIRE].

  41. [41]

    R. Karlsson, M. Kulaxizi, A. Parnachev and P. Tadić, Black Holes and Conformal Regge Bootstrap, J HEP10 (2019) 046 [arXiv:1904.00060] [INSPIRE].

    ADS  MATH  MathSciNet  Google Scholar 

  42. [42]

    A.L. Fitzpatrick, J. Kaplan, D. Poland and D. Simmons-Duffin, The Analytic Bootstrap and AdS Superhorizon Locality, JHEP12 (2013) 004 [arXiv:1212.3616] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  43. [43]

    Z. Komargodski and A. Zhiboedov, Convexity and Liberation at Large Spin, JHEP11 (2013) 140 [arXiv:1212.4103] [INSPIRE].

    ADS  Article  Google Scholar 

  44. [44]

    A.L. Fitzpatrick and J. Kaplan, Unitarity and the Holographic S-matrix, JHEP10 (2012) 032 [arXiv:1112.4845] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  45. [45]

    L. Cornalba, M.S. Costa, J. Penedones and R. Schiappa, Eikonal Approximation in AdS/CFT: From Shock Waves to Four-Point Functions, JHEP08 (2007) 019 [hep-th/0611122] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  46. [46]

    L. Cornalba, M.S. Costa, J. Penedones and R. Schiappa, Eikonal Approximation in AdS/CFT: Conformal Partial Waves and Finite N Four-Point Functions, Nucl. Phys.B 767 (2007) 327 [hep-th/0611123] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  47. [47]

    L. Cornalba, M.S. Costa and J. Penedones, Eikonal approximation in AdS/CFT: Resumming the gravitational loop expansion, JHEP09 (2007) 037 [arXiv:0707.0120] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  48. [48]

    L. Cornalba, M.S. Costa and J. Penedones, Eikonal Methods in AdS/CFT: BFKL Pomeron at Weak Coupling, JHEP06 (2008) 048 [arXiv:0801.3002] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  49. [49]

    M.S. Costa, V. Goncalves and J. Penedones, Conformal Regge theory, JHEP12 (2012) 091 [arXiv:1209.4355] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Affiliations

Authors

Corresponding author

Correspondence to Robin Karlsson.

Additional information

ArXiv ePrint: 1909.05775

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Karlsson, R., Kulaxizi, M., Parnachev, A. et al. Leading multi-stress tensors and conformal bootstrap. J. High Energ. Phys. 2020, 76 (2020). https://doi.org/10.1007/JHEP01(2020)076

Download citation

Keywords

  • AdS-CFT Correspondence
  • Conformal Field Theory