Emergent unitarity from the amplituhedron

Abstract

We present a proof of perturbative unitarity for planar \( \mathcal{N} \) = 4 SYM, following from the geometry of the amplituhedron. This proof is valid for amplitudes of arbitrary multiplicity n, loop order L and MHV degree k.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    Z. Bern, J.J.M. Carrasco, L.J. Dixon, H. Johansson and R. Roiban, Manifest ultraviolet behavior for the three-loop four-point amplitude of N = 8 supergravity, Phys. Rev.D 78 (2008) 105019 [arXiv:0808.4112] [INSPIRE].

    ADS  Google Scholar 

  2. [2]

    C. Anastasiou, R. Britto, B. Feng, Z. Kunszt and P. Mastrolia, D-dimensional unitarity cut method, Phys. Lett.B 645 (2007) 213 [hep-ph/0609191] [INSPIRE].

  3. [3]

    R. Britto, F. Cachazo and B. Feng, Generalized unitarity and one-loop amplitudes in N = 4 super-Yang-Mills, Nucl. Phys.D 725 (2005) 275 [hep-th/0412103] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  4. [4]

    Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, Fusing gauge theory tree amplitudes into loop amplitudes, Nucl. Phys.B 435 (1995) 59 [hep-ph/9409265] [INSPIRE].

  5. [5]

    Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One loop n-point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys.B 425 (1994) 217 [hep-ph/9403226] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  6. [6]

    R. Britto, F. Cachazo and B. Feng, New recursion relations for tree amplitudes of gluons, Nucl. Phys.D 715 (2005) 499 [hep-th/0412308] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  7. [7]

    N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, S. Caron-Huot and J. Trnka, The all-loop integrand for scattering amplitudes in planar N = 4 SYM, JHEP01 (2011) 041 [arXiv:1008.2958] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  8. [8]

    N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, A.B. Goncharov, A. Postnikov and J. Trnka, Grassmannian geometry of scattering amplitudes, Cambridge University Press, Cambridge, U.K. (2016) [arXiv:1212.5605] [INSPIRE].

    Book  MATH  Google Scholar 

  9. [9]

    N. Arkani-Hamed and J. Trnka, The amplituhedron, JHEP10 (2014) 030 [arXiv:1312.2007] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  10. [10]

    N. Arkani-Hamed and J. Trnka, Into the amplituhedron, JHEP12 (2014) 182 [arXiv:1312.7878] [INSPIRE].

    ADS  Article  Google Scholar 

  11. [11]

    A. Hodges, Eliminating spurious poles from gauge-theoretic amplitudes, JHEP05 (2013) 135 [arXiv:0905.1473] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  12. [12]

    N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, A. Hodges and J. Trnka, A note on polytopes for scattering amplitudes, JHEP04 (2012) 081 [arXiv:1012.6030] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  13. [13]

    N. Arkani-Hamed, F. Cachazo, C. Cheung and J. Kaplan, A duality for the S matrix, JHEP03 (2010) 020 [arXiv:0907.5418] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  14. [14]

    L.J. Mason and D. Skinner, Dual superconformal invariance, momentum twistors and Grassmannians, JHEP11 (2009) 045 [arXiv:0909.0250] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  15. [15]

    A. Postnikov, Total positivity, Grassmannians and networks, math.CO/0609764 [INSPIRE].

  16. [16]

    N. Arkani-Hamed, H. Thomas and J. Trnka, Unwinding the amplituhedron in binary, JHEP01 (2018) 016 [arXiv:1704.05069] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  17. [17]

    J.L. Bourjaily, J. Trnka, A. Volovich and C. Wen, The Grassmannian and the twistor string: connecting all trees in N = 4 SYM, JHEP01 (2011) 038 [arXiv:1006.1899] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  18. [18]

    N. Arkani-Hamed, F. Cachazo and C. Cheung, The Grassmannian origin of dual superconformal invariance, JHEP03 (2010) 036 [arXiv:0909.0483] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  19. [19]

    N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo and J. Trnka, Local integrals for planar scattering amplitudes, JHEP06 (2012) 125 [arXiv:1012.6032] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  20. [20]

    C. Langer and A. Yelleshpur Srikant, All-loop cuts from the amplituhedron, JHEP04 (2019) 105 [arXiv:1902.05951] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  21. [21]

    N. Arkani-Hamed, C. Langer, A. Yelleshpur Srikant and J. Trnka, Deep into the amplituhedron: amplitude singularities at all loops and legs, Phys. Rev. Lett.122 (2019) 051601 [arXiv:1810.08208] [INSPIRE].

    ADS  Article  Google Scholar 

  22. [22]

    S. Caron-Huot, Loops and trees, JHEP05 (2011) 080 [arXiv:1007.3224] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  23. [23]

    N. Arkani-Hamed, Y. Bai and T. Lam, Positive geometries and canonical forms, JHEP11 (2017) 039 [arXiv:1703.04541] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  24. [24]

    G. Salvatori, 1-loop amplitudes from the halohedron, JHEP12 (2019) 074 [arXiv:1806.01842] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  25. [25]

    G. Salvatori and S.L. Cacciatori, Hyperbolic geometry and amplituhedra in 1 + 2 dimensions, JHEP08 (2018) 167 [arXiv:1803.05809] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  26. [26]

    S. He, G. Yan, C. Zhang and Y. Zhang, Scattering forms, worldsheet forms and amplitudes from subspaces, JHEP08 (2018) 040 [arXiv:1803.11302] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  27. [27]

    N. Arkani-Hamed, Y. Bai, S. He and G. Yan, Scattering forms and the positive geometry of kinematics, color and the worldsheet, JHEP05 (2018) 096 [arXiv:1711.09102] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  28. [28]

    S. He and C. Zhang, Notes on scattering amplitudes as differential forms, JHEP10 (2018) 054 [arXiv:1807.11051] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  29. [29]

    D. Damgaard, L. Ferro, T. Lukowski and M. Parisi, The momentum amplituhedron, JHEP08 (2019) 042 [arXiv:1905.04216] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  30. [30]

    C. Anastasiou, R. Britto, B. Feng, Z. Kunszt and P. Mastrolia, Unitarity cuts and reduction to master integrals in d dimensions for one-loop amplitudes, JHEP03 (2007) 111 [hep-ph/0612277] [INSPIRE].

    Article  Google Scholar 

  31. [31]

    R.E. Cutkosky, Singularities and discontinuities of Feynman amplitudes, J. Math. Phys.1 (1960) 429 [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  32. [32]

    R.J. Eden, P.V. Landshoff, D.I. Olive and J.C. Polkinghorne, The analytic S-matrix. Cambridge Univ. Press, Cambridge, U.K. (1966) [INSPIRE].

    MATH  Google Scholar 

  33. [33]

    T. Lukowski, On the boundaries of the m = 2 amplituhedron, arXiv:1908.00386 [INSPIRE].

  34. [34]

    S. Franco, D. Galloni, A. Mariotti and J. Trnka, Anatomy of the amplituhedron, JHEP03 (2015) 128 [arXiv:1408.3410] [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  35. [35]

    D. Galloni, Positivity sectors and the amplituhedron, arXiv:1601.02639 [INSPIRE].

  36. [36]

    I. Prlina, M. Spradlin, J. Stankowicz and S. Stanojevic, Boundaries of amplituhedra and NMHV symbol alphabets at two loops, JHEP04 (2018) 049 [arXiv:1712.08049] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  37. [37]

    I. Prlina, M. Spradlin, J. Stankowicz, S. Stanojevic and A. Volovich, All-helicity symbol alphabets from unwound amplituhedra, JHEP05 (2018) 159 [arXiv:1711.11507] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  38. [38]

    T. Dennen, I. Prlina, M. Spradlin, S. Stanojevic and A. Volovich, Landau singularities from the amplituhedron, JHEP06 (2017) 152 [arXiv:1612.02708] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  39. [39]

    T. Dennen, M. Spradlin and A. Volovich, Landau singularities and symbology: one- and two-loop MHV amplitudes in SYM theory, JHEP03 (2016) 069 [arXiv:1512.07909] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  40. [40]

    I. Prlina, M. Spradlin and S. Stanojevic, All-loop singularities of scattering amplitudes in massless planar theories, Phys. Rev. Lett.121 (2018) 081601 [arXiv:1805.11617] [INSPIRE].

    ADS  Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Affiliations

Authors

Corresponding author

Correspondence to Akshay Yelleshpur Srikant.

Additional information

ArXiv ePrint: 1906.10700

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Srikant, A.Y. Emergent unitarity from the amplituhedron. J. High Energ. Phys. 2020, 69 (2020). https://doi.org/10.1007/JHEP01(2020)069

Download citation

Keywords

  • Scattering Amplitudes
  • Supersymmetric Gauge Theory