Anisotropic destruction of the Fermi surface in inhomogeneous holographic lattices

  • Askar Iliasov
  • Andrey A. BagrovEmail author
  • Mikhail I. Katsnelson
  • Alexander Krikun
Open Access
Regular Article - Theoretical Physics


We analyze fermionic response of strongly correlated holographic matter in presence of inhomogeneous periodically modulated potential mimicking the crystal lattice. The modulation is sourced by a scalar operator that explicitly breaks the translational symmetry in one direction. We compute the fermion spectral function and show that it either exhibits a well defined Fermi surface with umklapp gaps opening on the Brillouin zone boundary at small lattice wave vector, or, when the wave vector is large, the Fermi surface is anisotropically deformed and the quasiparticles get significantly broadened in the direction of translation symmetry breaking. Making use of the ability of our model to smoothly extrapolate to the homogeneous Q-lattice like setup, we show that this novel effect is not due to the periodic modulation of the potential and Umklapp physics, but rather due to the anisotropic features of the holographic horizon. That means it encodes novel physics of strongly correlated critical systems which may be relevant for phenomenology of exotic states of electron matter.


Holography and condensed matter physics (AdS/CMT) AdS-CFT Correspondence 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited


  1. [1]
    J. Zaanen, Y.-W. Sun, Y. Liu and K. Schalm, Holographic duality in condensed matter physics, Cambridge University Press, Cambridge U.K. (2015).CrossRefGoogle Scholar
  2. [2]
    B. Keimer et al., From quantum matter to high-temperature superconductivity in copper oxides, Nature518 (2015) 179.ADSCrossRefGoogle Scholar
  3. [3]
    M. Cubrovic, J. Zaanen and K. Schalm, String Theory, Quantum Phase Transitions and the Emergent Fermi-Liquid, Science325 (2009) 439 [arXiv:0904.1993] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    M. Cubrovic et al., Spectral probes of the holographic Fermi groundstate: dialing between the electron star and AdS Dirac hair, Phys. Rev.D 84 (2011) 086002 [arXiv:1106.1798] [INSPIRE].
  5. [5]
    H. Liu, J. McGreevy and D. Vegh, Non-Fermi liquids from holography, Phys. Rev.D 83 (2011) 065029 [arXiv:0903.2477] [INSPIRE].
  6. [6]
    T. Faulkner, H. Liu, J. McGreevy and D. Vegh, Emergent quantum criticality, Fermi surfaces and AdS 2, Phys. Rev.D 83 (2011) 125002 [arXiv:0907.2694] [INSPIRE].ADSGoogle Scholar
  7. [7]
    T. Faulkner and J. Polchinski, Semi-holographic Fermi liquids, JHEP06 (2011) 012 [arXiv:1001.5049] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    T. Faulkner et al., Holographic non-Fermi liquid fixed points, Phil. Trans. Roy. Soc.A 369 (2011) 1640 [arXiv:1101.0597] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    H. Fu and D.H. Lee, Dichotomy between the nodal and antinodal excitations in high-temperature superconductors, Phys. Rev.B 74 (2006) 174513.ADSCrossRefGoogle Scholar
  10. [10]
    A. Kanigel et al., Evolution of the pseudogap from fermi arcs to the nodal liquid, Nature Phys.2 (2006) 447.ADSCrossRefGoogle Scholar
  11. [11]
    M.I. Katsnelson et al., Half-metallic ferromagnets: from band structure to many-body effects, Rev. Mod. Phys.80 (2008) 315 [arXiv:0711.0872] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    G.T. Horowitz, J.E. Santos and D. Tong, Optical conductivity with holographic lattices, JHEP07 (2012) 168 [arXiv:1204.0519] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    G.T. Horowitz, J.E. Santos and D. Tong, Further evidence for lattice-induced scaling, JHEP11 (2012) 102 [arXiv:1209.1098] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    A. Donos and J.P. Gauntlett, The thermoelectric properties of inhomogeneous holographic lattices, JHEP01 (2015) 035 [arXiv:1409.6875] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    M. Rangamani, M. Rozali and D. Smyth, Spatial modulation and conductivities in effective holographic theories, JHEP07 (2015) 024 [arXiv:1505.05171] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    Y. Liu, K. Schalm, Y.-W. Sun and J. Zaanen, Lattice potentials and fermions in holographic non Fermi-liquids: hybridizing local quantum criticality, JHEP10 (2012) 036 [arXiv:1205.5227] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    Y. Ling et al., Holographic Fermionic liquid with lattices, JHEP07 (2013) 045 [arXiv:1304.2128] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    S. Cremonini, L. Li and J. Ren, Holographic fermions in striped phases, JHEP12 (2018) 080 [arXiv:1807.11730].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    S. Cremonini, L. Li and J. Ren, Spectral weight suppression and Fermi arc-like features with strong holographic lattices, JHEP09 (2019) 014 [arXiv:1906.02753] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    T. Andrade and B. Withers, A simple holographic model of momentum relaxation, JHEP05 (2014) 101 [arXiv:1311.5157] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    A. Donos and J.P. Gauntlett, Holographic Q-lattices, JHEP04 (2014) 040 [arXiv:1311.3292] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    A. Donos and S.A. Hartnoll, Interaction-driven localization in holography, Nature Phys.9 (2013) 649 [arXiv:1212.2998] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    Y. Ling et al., Holographic fermionic system with dipole coupling on Q-lattice, JHEP12 (2014) 149 [arXiv:1410.7323] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    A. Bagrov et al., Holographic fermions at strong translational symmetry breaking: a Bianchi-VII case study, JHEP11 (2016) 057 [arXiv:1608.03738] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  25. [25]
    G.F. Giudice and R. Rattazzi, Theories with gauge mediated supersymmetry breaking, Phys. Rept.322 (1999) 419 [hep-ph/9801271] [INSPIRE].
  26. [26]
    C.R. Dean et al., Boron nitride substrates for high-quality graphene electronics, Nature Nanotech.5 (2010) 722ADSCrossRefGoogle Scholar
  27. [27]
    J. Xue et al., Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride, Nature Mater.10 (2011) 282ADSCrossRefGoogle Scholar
  28. [28]
    C.R. Woods et al., Commensurate-incommensurate transition in graphene on hexagonal boron nitride Nature Phys.10 (2014) 451.Google Scholar
  29. [29]
    Y. Cao et al., Correlated insulator behaviour at half-filling in magic-angle graphene superlattices Nature556 (2018) 80.Google Scholar
  30. [30]
    Y. Cao et al., Unconventional superconductivity in magic-angle graphene superlattices, Nature556 (2018) 43.ADSCrossRefGoogle Scholar
  31. [31]
    Y. Cao et al., Strange metal in magic-angle graphene with near Planckian dissipation, arXiv:1811.04920.
  32. [32]
    J.R. Wallbank et al., Generic miniband structure of graphene on a hexagonal substrate, Phys. Rev.B 87 (2013) 245408ADSCrossRefGoogle Scholar
  33. [33]
    G.J. Slotman et al., Effect of structural relaxation on the electronic structure of graphene on hexagonal boron nitride Phys. Rev. Lett.115 (2015) 186801.ADSCrossRefGoogle Scholar
  34. [34]
    G. Vanacore and P.W. Phillips, Minding the gap in holographic models of interacting fermions, Phys. Rev.D 90 (2014) 044022 [arXiv:1405.1041] [INSPIRE].
  35. [35]
    F. Balm et al., Isolated zeros destroy Fermi surface in holographic models with a lattice, arXiv:1909.09394 [INSPIRE].
  36. [36]
    M. Headrick, S. Kitchen and T. Wiseman, A New approach to static numerical relativity and its application to Kaluza-Klein black holes, Class. Quant. Grav.27 (2010) 035002 [arXiv:0905.1822] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    T. Wiseman, Numerical construction of static and stationary black holes, arXiv:1107.5513.
  38. [38]
    A. Adam, S. Kitchen and T. Wiseman, A numerical approach to finding general stationary vacuum black holes, Class. Quant. Grav.29 (2012) 165002 [arXiv:1105.6347] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    D.T. Son and A.O. Starinets, Minkowski space correlators in AdS/CFT correspondence: recipe and applications, JHEP09 (2002) 042 [hep-th/0205051] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    I.M. Lifshitz, M.Ya. Azbel and M.I. Kaganov, Electron theory of metals, Consultants Bureau, New York U.S.A. (1973).Google Scholar
  41. [41]
    S.V. Vonsovsky and M. I. Katsnelson, Quantum solid-state physics, Springer, Germany (1989).CrossRefGoogle Scholar
  42. [42]
    M.I. Katsnelson and A.V. Trefilov, Fermi-liquid theory of electronic topological transitions and screening anomalies in metals, Phys. Rev.B 61 (2000) 1643.ADSCrossRefGoogle Scholar
  43. [43]
    T. Reber et al., Power law liquid-a unified form of low-energy nodal electronic interactions in hole doped cuprate superconductors, arXiv:1509.01611.
  44. [44]
    R.A. Davison and B. Goutéraux, Dissecting holographic conductivities, JHEP09 (2015) 090 [arXiv:1505.05092] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  45. [45]
    R.A. Davison and B. Goutéraux, Momentum dissipation and effective theories of coherent and incoherent transport, JHEP01 (2015) 039 [arXiv:1411.1062] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    A. Donos and J.P. Gauntlett, Novel metals and insulators from holography, JHEP06 (2014) 007 [arXiv:1401.5077] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2020

Authors and Affiliations

  1. 1.Institute for Molecules and MaterialsRadboud UniversityNijmegenThe Netherlands
  2. 2.Department of Physics and AstronomyUppsala UniversityUppsalaSweden
  3. 3.Instituut-Lorentz for Theoretical Physics, ∆-ITPLeiden UniversityLeidenThe Netherlands
  4. 4.Space Research Institute of the Russian Academy of ScienceMoscowRussia

Personalised recommendations