An alternative to diagrams for the critical O(N) model: dimensions and structure constants to order 1/N2

Abstract

We apply the methods of modern analytic bootstrap to the critical O(N) model in a 1/N expansion. At infinite N the model possesses higher spin symmetry which is weakly broken as we turn on 1/N. By studying consistency conditions for the correlator of four fundamental fields we derive the CFT-data for all the (broken) currents to order 1/N, and the CFT-data for the non-singlet currents to order 1/N2. To order 1/N our results are in perfect agreement with those in the literature. To order 1/N2 we reproduce known results for anomalous dimensions and obtain a variety of new results for structure constants, including the global symmetry central charge CJ to this order.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    R. Rattazzi, V.S. Rychkov, E. Tonni and A. Vichi, Bounding scalar operator dimensions in 4D CFT, JHEP12 (2008) 031 [arXiv:0807.0004] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  2. [2]

    D. Poland, S. Rychkov and A. Vichi, The conformal bootstrap: theory, numerical techniques and applications, Rev. Mod. Phys.91 (2019) 015002 [arXiv:1805.04405] [INSPIRE].

  3. [3]

    L.F. Alday and J.M. Maldacena, Comments on operators with large spin, JHEP11 (2007) 019 [arXiv:0708.0672] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  4. [4]

    A.L. Fitzpatrick, J. Kaplan, D. Poland and D. Simmons-Duffin, The analytic bootstrap and AdS superhorizon locality, JHEP12 (2013) 004 [arXiv:1212.3616] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  5. [5]

    Z. Komargodski and A. Zhiboedov, Convexity and liberation at large spin, JHEP11 (2013) 140 [arXiv:1212.4103] [INSPIRE].

    ADS  Article  Google Scholar 

  6. [6]

    L.F. Alday, Large spin perturbation theory for conformal field theories, Phys. Rev. Lett.119 (2017) 111601 [arXiv:1611.01500] [INSPIRE].

    ADS  Article  Google Scholar 

  7. [7]

    L.F. Alday, A. Bissi and T. Lukowski, Large spin systematics in CFT, JHEP11 (2015) 101 [arXiv:1502.07707] [INSPIRE].

    ADS  MATH  Google Scholar 

  8. [8]

    L.F. Alday, Solving CFTs with weakly broken higher spin symmetry, JHEP10 (2017) 161 [arXiv:1612.00696] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  9. [9]

    S. Caron-Huot, Analyticity in spin in conformal theories, JHEP09 (2017) 078 [arXiv:1703.00278] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  10. [10]

    A. Pelissetto and E. Vicari, Critical phenomena and renormalization group theory, Phys. Rept.368 (2002) 549 [cond-mat/0012164] [INSPIRE].

  11. [11]

    I.R. Klebanov and A.M. Polyakov, AdS dual of the critical O(N) vector model, Phys. Lett.B 550 (2002) 213 [hep-th/0210114] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  12. [12]

    M.A. Vasiliev, Higher spin gauge theories in four-dimensions, three-dimensions and two-dimensions, Int. J. Mod. Phys.D 5 (1996) 763 [hep-th/9611024] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  13. [13]

    F. Kos, D. Poland, D. Simmons-Duffin and A. Vichi, Precision islands in the Ising and O(N) models, JHEP08 (2016) 036 [arXiv:1603.04436] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  14. [14]

    D. Simmons-Duffin, The lightcone bootstrap and the spectrum of the 3d Ising CFT, JHEP03 (2017) 086 [arXiv:1612.08471] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  15. [15]

    L. Fei, S. Giombi and I.R. Klebanov, Critical O(N) models in 6 − ϵ dimensions, Phys. Rev.D 90 (2014) 025018 [arXiv:1404.1094] [INSPIRE].

  16. [16]

    A.N. Vasiliev, Yu. M. Pismak and Yu. R. Khonkonen, 1/n expansion: calculation of the exponent η in the order 1/n 3by the conformal bootstrap method, Theor. Math. Phys.50 (1982) 127 [Teor. Mat. Fiz.50 (1982) 195] [INSPIRE].

  17. [17]

    A.N. Vasiliev, Yu. M. Pismak and Yu. R. Khonkonen, 1/n expansion: calculation of the exponents η and ν in the order 1/n 2for arbitrary number of dimensions, Theor. Math. Phys.47 (1981) 465 [Teor. Mat. Fiz.47 (1981) 291] [INSPIRE].

  18. [18]

    S.E. Derkachov and A.N. Manashov, The simple scheme for the calculation of the anomalous dimensions of composite operators in the 1/N expansion, Nucl. Phys.B 522 (1998) 301 [hep-th/9710015] [INSPIRE].

    ADS  Article  Google Scholar 

  19. [19]

    A.N. Manashov, E.D. Skvortsov and M. Strohmaier, Higher spin currents in the critical O(N) vector model at 1/N 2 , JHEP08 (2017) 106 [arXiv:1706.09256] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  20. [20]

    A. Petkou, Conserved currents, consistency relations and operator product expansions in the conformally invariant O(N) vector model, Annals Phys.249 (1996) 180 [hep-th/9410093] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  21. [21]

    K. Lang and W. Rühl, The critical O(N) σ-model at dimensions 2 < d < 4: a list of quasiprimary fields, Nucl. Phys.B 402 (1993) 573 [INSPIRE].

  22. [22]

    A.C. Petkou, C Tand C Jup to next-to-leading order in 1/N in the conformally invariant O(N) vector model for 2 < d < 4, Phys. Lett.B 359 (1995) 101 [hep-th/9506116] [INSPIRE].

    ADS  Article  Google Scholar 

  23. [23]

    P. Dey, A. Kaviraj and A. Sinha, Mellin space bootstrap for global symmetry, JHEP07 (2017) 019 [arXiv:1612.05032] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  24. [24]

    L.F. Alday and S. Caron-Huot, Gravitational S-matrix from CFT dispersion relations, JHEP12 (2018) 017 [arXiv:1711.02031] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  25. [25]

    L.F. Alday, J. Henriksson and M. van Loon, Taming the ϵ-expansion with large spin perturbation theory, JHEP07 (2018) 131 [arXiv:1712.02314] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  26. [26]

    F.A. Dolan and H. Osborn, Conformal partial waves and the operator product expansion, Nucl. Phys.B 678 (2004) 491 [hep-th/0309180] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  27. [27]

    F.A. Dolan and H. Osborn, Conformal four point functions and the operator product expansion, Nucl. Phys.B 599 (2001) 459 [hep-th/0011040] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  28. [28]

    M. Hogervorst and B.C. van Rees, Crossing symmetry in alpha space, JHEP11 (2017) 193 [arXiv:1702.08471] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  29. [29]

    K. Lang and W. Rühl, The critical O(N) σ-model at dimensions 2 < d < 4: fusion coefficients and anomalous dimensions, Nucl. Phys.B 400 (1993) 597 [INSPIRE].

  30. [30]

    A.N. Vasiliev, Yu. M. Pismak and Yu. R. Khonkonen, Simple method of calculating the critical indices in the 1/N expansion, Theor. Math. Phys.46 (1981) 104 [Teor. Mat. Fiz.46 (1981) 157] [INSPIRE].

  31. [31]

    H. Exton, Handbook of hypergeometric integrals: theory, applications, tables, computer programs, Ellis Horwood series in mathematics and its applications, Ellis Horwood, (1978).

  32. [32]

    C. Sleight and M. Taronna, Spinning Mellin bootstrap: conformal partial waves, crossing kernels and applications, Fortsch. Phys.66 (2018) 1800038 [arXiv:1804.09334] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  33. [33]

    C. Cardona and K. Sen, Anomalous dimensions at finite conformal spin from OPE inversion, JHEP11 (2018) 052 [arXiv:1806.10919] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  34. [34]

    C. Sleight and M. Taronna, Anomalous dimensions from crossing kernels, JHEP11 (2018) 089 [arXiv:1807.05941] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  35. [35]

    J. Liu, E. Perlmutter, V. Rosenhaus and D. Simmons-Duffin, d-dimensional SYK, AdS loops and 6j symbols, JHEP03 (2019) 052 [arXiv:1808.00612] [INSPIRE].

  36. [36]

    C. Cardona, S. Guha, S.K. KaNuMIlli and K. Sen, Resummation at finite conformal spin, JHEP01 (2019) 077 [arXiv:1811.00213] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  37. [37]

    S. Albayrak, D. Meltzer and D. Poland, More analytic bootstrap: nonperturbative effects and fermions, JHEP08 (2019) 040 [arXiv:1904.00032] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  38. [38]

    J. Henriksson and M. Van Loon, Critical O(N) model to order ϵ 4from analytic bootstrap, J. Phys.A 52 (2019) 025401 [arXiv:1801.03512] [INSPIRE].

  39. [39]

    L. Rastelli and X. Zhou, How to succeed at holographic correlators without really trying, JHEP04 (2018) 014 [arXiv:1710.05923] [INSPIRE].

    MathSciNet  Article  ADS  MATH  Google Scholar 

  40. [40]

    L.F. Alday and A. Zhiboedov, An algebraic approach to the analytic bootstrap, JHEP04 (2017) 157 [arXiv:1510.08091] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  41. [41]

    K. Lang and W. Rühl, Critical nonlinear O(N) σ-models at 2 < d < 4: the degeneracy of quasiprimary fields and it resolution, Z. Phys.C 61 (1994) 495 [INSPIRE].

  42. [42]

    S. Giombi and V. Kirilin, Anomalous dimensions in CFT with weakly broken higher spin symmetry, JHEP11 (2016) 068 [arXiv:1601.01310] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  43. [43]

    S. Yabunaka and B. Delamotte, Surprises in O(N) models: nonperturbative fixed points, large N limits and multicriticality, Phys. Rev. Lett.119 (2017) 191602 [arXiv:1707.04383] [INSPIRE].

    ADS  Article  Google Scholar 

  44. [44]

    M. Hogervorst, S. Rychkov and B.C. van Rees, Unitarity violation at the Wilson-Fisher fixed point in 4 − ϵ dimensions, Phys. Rev.D 93 (2016) 125025 [arXiv:1512.00013] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  45. [45]

    J. Maldacena and A. Zhiboedov, Constraining conformal field theories with a higher spin symmetry, J. Phys.A 46 (2013) 214011 [arXiv:1112.1016] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  46. [46]

    O. Schnetz, Numbers and functions in quantum field theory, Phys. Rev.D 97 (2018) 085018 [arXiv:1606.08598] [INSPIRE].

  47. [47]

    M.V. Kompaniets and E. Panzer, Minimally subtracted six loop renormalization of O(N)-symmetric ϕ 4theory and critical exponents, Phys. Rev.D 96 (2017) 036016 [arXiv:1705.06483] [INSPIRE].

  48. [48]

    S.E. Derkachov, J.A. Gracey and A.N. Manashov, Four loop anomalous dimensions of gradient operators in ϕ 4theory, Eur. Phys. J.C 2 (1998) 569 [hep-ph/9705268] [INSPIRE].

  49. [49]

    F. Kos, D. Poland, D. Simmons-Duffin and A. Vichi, Bootstrapping the O(N) archipelago, JHEP11 (2015) 106 [arXiv:1504.07997] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  50. [50]

    E. Katz, S. Sachdev, E.S. Sørensen and W. Witczak-Krempa, Conformal field theories at nonzero temperature: operator product expansions, Monte Carlo and holography, Phys. Rev.B 90 (2014) 245109 [arXiv:1409.3841] [INSPIRE].

    ADS  Article  Google Scholar 

  51. [51]

    K. Chen, L. Liu, Y. Deng, L. Pollet and N. Prokof’ev, Universal conductivity in a two-dimensional superfluid-to-insulator quantum critical system, Phys. Rev. Lett.112 (2014) 030402 [arXiv:1309.5635] [INSPIRE].

  52. [52]

    K. Diab, L. Fei, S. Giombi, I.R. Klebanov and G. Tarnopolsky, On C Jand C Tin the Gross-Neveu and O(N ) models, J. Phys.A 49 (2016) 405402 [arXiv:1601.07198] [INSPIRE].

    MATH  Google Scholar 

  53. [53]

    A. Cappelli, L. Maffi and S. Okuda, Critical Ising model in varying dimension by conformal bootstrap, JHEP01 (2019) 161 [arXiv:1811.07751] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  54. [54]

    W. Bühring, Generalized hypergeometric functions at unit argument, Proc. Amer. Math. Soc.114 (1992) 145.

  55. [55]

    W. Li, Closed-form expression for cross-channel conformal blocks near the lightcone, arXiv:1906.00707 [INSPIRE].

  56. [56]

    P. Appell, Sur les séries hypergéométriques de deux variables et sur dés équations différentielles linéaires aux dérivés partielles (in French), C. R. Acad. Sci. Paris90 (1880) 296.

  57. [57]

    P. Appell, Sur les fonctions hypergómétriques de plusieurs variables, les polynômes d’Hermite et autres fonctions sphériques dans l’hyperespace (in French), Mém. Sci. Math.3 (1925) 82.

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Affiliations

Authors

Corresponding author

Correspondence to Johan Henriksson.

Additional information

ArXiv ePrint: 1907.02445

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alday, L.F., Henriksson, J. & van Loon, M. An alternative to diagrams for the critical O(N) model: dimensions and structure constants to order 1/N2. J. High Energ. Phys. 2020, 63 (2020). https://doi.org/10.1007/JHEP01(2020)063

Download citation

Keywords

  • Conformal Field Theory
  • Global Symmetries
  • 1/N Expansion