New conformal higher spin gravities in 3d

  • 9 Accesses


We propose a new class of conformal higher spin gravities in three dimensions, which extends the one by Pope and Townsend. The main new feature is that there are infinitely many examples of the new theories with a finite number of higher spin fields, much as in the massless case. The action has the Chern-Simons form for a higher spin extension of the conformal algebra. In general, the new theories contain Fradkin-Tseytlin fields with higher derivatives in the gauge transformations, which is reminiscent of partially-massless fields. A relation of the old and new theories to the parity anomaly is pointed out.

A preprint version of the article is available at ArXiv.


  1. [1]

    A. Achucarro and P.K. Townsend, A Chern-Simons Action for Three-Dimensional anti-de Sitter Supergravity Theories, Phys. Lett.B 180 (1986) 89 [INSPIRE].

  2. [2]

    E. Witten, (2 + 1)-Dimensional Gravity as an Exactly Soluble System, Nucl. Phys.B 311 (1988) 46 [INSPIRE].

  3. [3]

    M.P. Blencowe, A Consistent Interacting Massless Higher Spin Field Theory in D = (2 + 1), Class. Quant. Grav.6 (1989) 443 [INSPIRE].

  4. [4]

    E. Bergshoeff, M.P. Blencowe and K.S. Stelle, Area Preserving Diffeomorphisms and Higher Spin Algebra, Commun. Math. Phys.128 (1990) 213 [INSPIRE].

  5. [5]

    A. Campoleoni, S. Fredenhagen, S. Pfenninger and S. Theisen, Asymptotic symmetries of three-dimensional gravity coupled to higher-spin fields, JHEP11 (2010) 007 [arXiv:1008.4744] [INSPIRE].

  6. [6]

    M. Henneaux and S.-J. Rey, Nonlinear W∞ as Asymptotic Symmetry of Three-Dimensional Higher Spin Anti-de Sitter Gravity, JHEP12 (2010) 007 [arXiv:1008.4579] [INSPIRE].

  7. [7]

    M.R. Gaberdiel and R. Gopakumar, Minimal Model Holography, J. Phys.A 46 (2013) 214002 [arXiv:1207.6697] [INSPIRE].

  8. [8]

    P. van Nieuwenhuizen, D = 3 Conformal Supergravity and Chern-Simons Terms, Phys. Rev.D 32 (1985) 872 [INSPIRE].

  9. [9]

    J.H. Horne and E. Witten, Conformal Gravity in Three-dimensions as a Gauge Theory, Phys. Rev. Lett.62 (1989) 501 [INSPIRE].

  10. [10]

    C.N. Pope and P.K. Townsend, Conformal Higher Spin in (2 + 1)-dimensions, Phys. Lett.B 225 (1989) 245 [INSPIRE].

  11. [11]

    E.S. Fradkin and V.Y. Linetsky, A Superconformal Theory of Massless Higher Spin Fields in D = (2 + 1), Mod. Phys. Lett.A 4 (1989) 731 [INSPIRE].

  12. [12]

    E.S. Fradkin and A.A. Tseytlin, Conformal supergravity, Phys. Rept.119 (1985) 233 [INSPIRE].

  13. [13]

    M. Eastwood and T. Leistner, Higher Symmetries of the Square of the Laplacian, pp. 319–338, Springer, New York, NY (2008).

  14. [14]

    J.-P. Michel, Higher symmetries of the laplacian via quantization, Annales Inst. Fourier64 (2014) 1581 [arXiv:1107.5840].

  15. [15]

    A.R. Gover and J. Šilhan, Higher symmetries of the conformal powers of the laplacian on conformally flat manifolds, J. Math. Phys.53 (2012) 032301.

  16. [16]

    X. Bekaert and M. Grigoriev, Higher order singletons, partially massless fields and their boundary values in the ambient approach, Nucl. Phys.B 876 (2013) 667 [arXiv:1305.0162] [INSPIRE].

  17. [17]

    L. Dolan, C.R. Nappi and E. Witten, Conformal operators for partially massless states, JHEP10 (2001) 016 [hep-th/0109096] [INSPIRE].

  18. [18]

    K.B. Alkalaev, M. Grigoriev and E.D. Skvortsov, Uniformizing higher-spin equations, J. Phys.A 48 (2015) 015401 [arXiv:1409.6507] [INSPIRE].

  19. [19]

    T. Basile, X. Bekaert and N. Boulanger, Flato-Fronsdal theorem for higher-order singletons, JHEP11 (2014) 131 [arXiv:1410.7668] [INSPIRE].

  20. [20]

    N. Boulanger and E.D. Skvortsov, Higher-spin algebras and cubic interactions for simple mixed-symmetry fields in AdS spacetime, JHEP09 (2011) 063 [arXiv:1107.5028] [INSPIRE].

  21. [21]

    E. Joung and K. Mkrtchyan, Partially-massless higher-spin algebras and their finite-dimensional truncations, JHEP01 (2016) 003 [arXiv:1508.07332] [INSPIRE].

  22. [22]

    S. Deser and R.I. Nepomechie, Anomalous Propagation of Gauge Fields in Conformally Flat Spaces, Phys. Lett.132B (1983) 321 [INSPIRE].

  23. [23]

    J. Erdmenger and H. Osborn, Conformally covariant differential operators: Symmetric tensor fields, Class. Quant. Grav.15 (1998) 273 [gr-qc/9708040] [INSPIRE].

  24. [24]

    M.A. Vasiliev, Bosonic conformal higher-spin fields of any symmetry, Nucl. Phys.B 829 (2010) 176 [arXiv:0909.5226] [INSPIRE].

  25. [25]

    M. Beccaria and A.A. Tseytlin, On higher spin partition functions, J. Phys.A 48 (2015) 275401 [arXiv:1503.08143] [INSPIRE].

  26. [26]

    S.M. Kuzenko and M. Ponds, Conformal geometry and (super)conformal higher-spin gauge theories, JHEP05 (2019) 113 [arXiv:1902.08010] [INSPIRE].

  27. [27]

    A. Higuchi, Forbidden Mass Range for Spin-2 Field Theory in de Sitter Space-time, Nucl. Phys.B 282 (1987) 397 [INSPIRE].

  28. [28]

    S. Deser and A. Waldron, Partial masslessness of higher spins in (A)dS, Nucl. Phys.B 607 (2001) 577 [hep-th/0103198] [INSPIRE].

  29. [29]

    Y.M. Zinoviev, On massive high spin particles in AdS, hep-th/0108192 [INSPIRE].

  30. [30]

    E.D. Skvortsov and M.A. Vasiliev, Geometric formulation for partially massless fields, Nucl. Phys.B 756 (2006) 117 [hep-th/0601095] [INSPIRE].

  31. [31]

    B.E.W. Nilsson, Towards an exact frame formulation of conformal higher spins in three dimensions, JHEP09 (2015) 078 [arXiv:1312.5883] [INSPIRE].

  32. [32]

    B.E.W. Nilsson, On the conformal higher spin unfolded equation for a three-dimensional self-interacting scalar field, JHEP08 (2016) 142 [arXiv:1506.03328] [INSPIRE].

  33. [33]

    H. Linander and B.E.W. Nilsson, The non-linear coupled spin 2-spin 3 Cotton equation in three dimensions, JHEP07 (2016) 024 [arXiv:1602.01682] [INSPIRE].

  34. [34]

    S. Fredenhagen and P. Kessel, Metric- and frame-like higher-spin gauge theories in three dimensions, J. Phys.A 48 (2015) 035402 [arXiv:1408.2712] [INSPIRE].

  35. [35]

    A. Campoleoni, S. Fredenhagen, S. Pfenninger and S. Theisen, Towards metric-like higher-spin gauge theories in three dimensions, J. Phys.A 46 (2013) 214017 [arXiv:1208.1851] [INSPIRE].

  36. [36]

    M. Henneaux, S. Hörtner and A. Leonard, Higher Spin Conformal Geometry in Three Dimensions and Prepotentials for Higher Spin Gauge Fields, JHEP01 (2016) 073 [arXiv:1511.07389] [INSPIRE].

  37. [37]

    S.M. Kuzenko and M. Tsulaia, Off-shell massive N = 1 supermultiplets in three dimensions, Nucl. Phys.B 914 (2017) 160 [arXiv:1609.06910] [INSPIRE].

  38. [38]

    S.M. Kuzenko, Higher spin super-Cotton tensors and generalisations of the linear-chiral duality in three dimensions, Phys. Lett.B 763 (2016) 308 [arXiv:1606.08624] [INSPIRE].

  39. [39]

    T. Basile, R. Bonezzi and N. Boulanger, The Schouten tensor as a connection in the unfolding of 3D conformal higher-spin fields, JHEP04 (2017) 054 [arXiv:1701.08645] [INSPIRE].

  40. [40]

    E.I. Buchbinder, S.M. Kuzenko, J. La Fontaine and M. Ponds, Spin projection operators and higher-spin Cotton tensors in three dimensions, Phys. Lett.B 790 (2019) 389 [arXiv:1812.05331] [INSPIRE].

  41. [41]

    E.I. Buchbinder, D. Hutchings, J. Hutomo and S.M. Kuzenko, Linearised actions for \( \mathcal{N} \)-extended (higher-spin) superconformal gravity, JHEP08 (2019) 077 [arXiv:1905.12476] [INSPIRE].

  42. [42]

    G. Barnich, X. Bekaert and M. Grigoriev, Notes on conformal invariance of gauge fields, J. Phys.A 48 (2015) 505402 [arXiv:1506.00595] [INSPIRE].

  43. [43]

    R.R. Metsaev, Long, partial-short and special conformal fields, JHEP05 (2016) 096 [arXiv:1604.02091] [INSPIRE].

  44. [44]

    A.Y. Segal, Conformal higher spin theory, Nucl. Phys.B 664 (2003) 59 [hep-th/0207212] [INSPIRE].

  45. [45]

    A.A. Tseytlin, On limits of superstring in AdS 5× S 5 , Theor. Math. Phys.133 (2002) 1376 [hep-th/0201112] [INSPIRE].

  46. [46]

    X. Bekaert, E. Joung and J. Mourad, Effective action in a higher-spin background, JHEP02 (2011) 048 [arXiv:1012.2103] [INSPIRE].

  47. [47]

    A.J. Niemi and G.W. Semenoff, Axial Anomaly Induced Fermion Fractionization and Effective Gauge Theory Actions in Odd Dimensional Space-Times, Phys. Rev. Lett.51 (1983) 2077 [INSPIRE].

  48. [48]

    A.N. Redlich, Parity Violation and Gauge Noninvariance of the Effective Gauge Field Action in Three-Dimensions, Phys. Rev.D 29 (1984) 2366 [INSPIRE].

  49. [49]

    A.N. Redlich, Gauge Noninvariance and Parity Violation of Three-Dimensional Fermions, Phys. Rev. Lett.52 (1984) 18 [INSPIRE].

  50. [50]

    L. Álvarez-Gaumé, S. Della Pietra and G.W. Moore, Anomalies and Odd Dimensions, Annals Phys.163 (1985) 288 [INSPIRE].

  51. [51]

    M. Kurkov and D. Vassilevich, Gravitational parity anomaly with and without boundaries, JHEP03 (2018) 072 [arXiv:1801.02049] [INSPIRE].

  52. [52]

    V.E. Didenko and E.D. Skvortsov, Towards higher-spin holography in ambient space of any dimension, J. Phys.A 46 (2013) 214010 [arXiv:1207.6786] [INSPIRE].

  53. [53]

    L. Bonora, M. Cvitan, P. Dominis Prester, B. Lima de Souza and I. Smolíc, Massive fermion model in 3d and higher spin currents, JHEP05 (2016) 072 [arXiv:1602.07178] [INSPIRE].

  54. [54]

    M.F. Atiyah, V.K. Patodi and I.M. Singer, Spectral asymmetry and Riemannian Geometry 1, Math. Proc. Cambridge Phil. Soc.77 (1975) 43 [INSPIRE].

  55. [55]

    H. Afshar, B. Cvetkovic, S. Ertl, D. Grumiller and N. Johansson, Conformal Chern-Simons holography — lock, stock and barrel, Phys. Rev.D 85 (2012) 064033 [arXiv:1110.5644] [INSPIRE].

  56. [56]

    A. Bagchi, S. Detournay and D. Grumiller, Flat-Space Chiral Gravity, Phys. Rev. Lett.109 (2012) 151301 [arXiv:1208.1658] [INSPIRE].

  57. [57]

    H.R. Afshar, Flat/AdS boundary conditions in three dimensional conformal gravity, JHEP10 (2013) 027 [arXiv:1307.4855] [INSPIRE].

  58. [58]

    S. Deser, R. Jackiw and S. Templeton, Topologically Massive Gauge Theories, Annals Phys.140 (1982) 372 [Erratum ibid.185 (1988) 406] [INSPIRE].

  59. [59]

    S. Deser, R. Jackiw and S. Templeton, Three-Dimensional Massive Gauge Theories, Phys. Rev. Lett.48 (1982) 975 [INSPIRE].

  60. [60]

    M.A. Vasiliev, Nonlinear equations for symmetric massless higher spin fields in (A)dS d, Phys. Lett.B 567 (2003) 139 [hep-th/0304049] [INSPIRE].

  61. [61]

    K.B. Alkalaev, Global and local properties of AdS 2higher spin gravity, JHEP10 (2014) 122 [arXiv:1404.5330] [INSPIRE].

  62. [62]

    E. Joung and K. Mkrtchyan, Notes on higher-spin algebras: minimal representations and structure constants, JHEP05 (2014) 103 [arXiv:1401.7977] [INSPIRE].

  63. [63]

    R. Manvelyan, K. Mkrtchyan, R. Mkrtchyan and S. Theisen, On Higher Spin Symmetries in AdS5 , JHEP10 (2013) 185 [arXiv:1304.7988] [INSPIRE].

  64. [64]

    C. Brust and K. Hinterbichler, Freekscalar conformal field theory, JHEP02 (2017) 066 [arXiv:1607.07439] [INSPIRE].

  65. [65]

    X. Bekaert and M. Grigoriev, Higher-Order Singletons and Partially Massless Fields, Bulg. J. Phys.41 (2014) 172 [INSPIRE].

  66. [66]

    E.D. Skvortsov, Gauge fields in (A)dS dwithin the unfolded approach: algebraic aspects, JHEP01 (2010) 106 [arXiv:0910.3334] [INSPIRE].

  67. [67]

    M. Grigoriev, Off-shell gauge fields from BRST quantization, hep-th/0605089 [INSPIRE].

  68. [68]

    X. Bekaert, M. Grigoriev and E.D. Skvortsov, Higher Spin Extension of Fefferman-Graham Construction, Universe4 (2018) 17 [arXiv:1710.11463] [INSPIRE].

  69. [69]

    M. Grigoriev and E.D. Skvortsov, Type-B Formal Higher Spin Gravity, JHEP05 (2018) 138 [arXiv:1804.03196] [INSPIRE].

  70. [70]

    O.V. Shaynkman, I.Y. Tipunin and M.A. Vasiliev, Unfolded form of conformal equations in M dimensions and o(M + 2) modules, Rev. Math. Phys.18 (2006) 823 [hep-th/0401086] [INSPIRE].

  71. [71]

    M. Alexandrov, A. Schwarz, O. Zaboronsky and M. Kontsevich, The Geometry of the master equation and topological quantum field theory, Int. J. Mod. Phys.A 12 (1997) 1405 [hep-th/9502010] [INSPIRE].

  72. [72]

    G. Barnich and M. Grigoriev, A Poincaré lemma for σ-models of AKSZ type, J. Geom. Phys.61 (2011) 663 [arXiv:0905.0547] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Correspondence to Evgeny Skvortsov.

Additional information

ArXiv ePrint: 1909.13305

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Grigoriev, M., Lovrekovic, I. & Skvortsov, E. New conformal higher spin gravities in 3d. J. High Energ. Phys. 2020, 59 (2020) doi:10.1007/JHEP01(2020)059

Download citation


  • Chern-Simons Theories
  • Higher Spin Gravity
  • Higher Spin Symmetry