Advertisement

The 0ν2β-decay CROSS experiment: preliminary results and prospects

  • The CROSS collaboration
  • I. C. Bandac
  • A. S. Barabash
  • L. Bergé
  • M. Brière
  • C. Bourgeois
  • P. Carniti
  • M. Chapellier
  • M. de Combarieu
  • I. Dafinei
  • F. A. Danevich
  • N. Dosme
  • D. Doullet
  • L. Dumoulin
  • F. Ferri
  • A. GiulianiEmail author
  • C. Gotti
  • P. Gras
  • E. Guerard
  • A. Ianni
  • H. Khalife
  • S. I. Konovalov
  • E. Legay
  • P. Loaiza
  • P. de Marcillac
  • S. Marnieros
  • C. A. Marrache-Kikuchi
  • C. Nones
  • V. Novati
  • E. Olivieri
  • C. Oriol
  • G. Pessina
  • D. V. Poda
  • T. Redon
  • V. I. Tretyak
  • V. I. Umatov
  • M. M. Zarytsky
  • A. S. Zolotarova
Open Access
Regular Article - Experimental Physics
  • 16 Downloads

Abstract

Neutrinoless double-beta decay is a key process in particle physics. Its experimental investigation is the only viable method that can establish the Majorana nature of neutrinos, providing at the same time a sensitive inclusive test of lepton number violation. CROSS (Cryogenic Rare-event Observatory with Surface Sensitivity) aims at developing and testing a new bolometric technology to be applied to future large-scale experiments searching for neutrinoless double-beta decay of the promising nuclei 100Mo and 130Te. The limiting factor in large-scale bolometric searches for this rare process is the background induced by surface radioactive contamination, as shown by the results of the CUORE experiment. The basic concept of CROSS consists of rejecting this challenging background component by pulse-shape discrimination, assisted by a proper coating of the faces of the crystal containing the isotope of interest and serving as energy absorber of the bolometric detector. In this paper, we demonstrate that ultra-pure superconductive Al films deposited on the crystal surfaces act successfully as pulse-shape modifiers, both with fast and slow phonon sensors. Rejection factors higher than 99.9% of α surface radioactivity have been demonstrated in a series of prototypes based on crystals of Li2MoO4 and TeO2. We have also shown that point-like energy depositions can be identified up to a distance of 1 mm from the coated surface. The present program envisions an intermediate experiment to be installed underground in the Canfranc laboratory (Spain) in a CROSS-dedicated facility. This experiment, comprising 3×1025 nuclei of 100Mo, will be a general test of the CROSS technology as well as a worldwide competitive search for neutrinoless double-beta decay, with sensitivity to the effective Majorana mass down to 70 meV in the most favorable conditions.

Keywords

Dark Matter and Double Beta Decay (experiments) 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    H. Päs and W. Rodejohann, Neutrinoless double beta decay, New J. Phys.17 (2015) 115010 [arXiv:1507.00170] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    S. Dell’Oro, S. Marcocci, M. Viel and F. Vissani, Neutrinoless double beta decay: 2015 review, Adv. High Energy Phys.2016 (2016) 2162659 [arXiv:1601.07512] [INSPIRE].CrossRefGoogle Scholar
  3. [3]
    J.D. Vergados, H. Ejiri and F. Šimkovic, Neutrinoless double beta decay and neutrino mass, Int. J. Mod. Phys.E 25 (2016) 1630007 [arXiv:1612.02924] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    KamLAND-Zen collaboration, Search for Majorana Neutrinos near the Inverted Mass Hierarchy Region with KamLAND-Zen, Phys. Rev. Lett.117 (2016) 082503 [arXiv:1605.02889] [INSPIRE].
  5. [5]
    GERDA collaboration, Improved Limit on Neutrinoless Double-β Decay of 76Ge from GERDA Phase II, Phys. Rev. Lett.120 (2018) 132503 [arXiv:1803.11100] [INSPIRE].
  6. [6]
    CUORE collaboration, First Results from CUORE: A Search for Lepton Number Violation via 0νββ Decay of 130Te, Phys. Rev. Lett.120 (2018) 132501 [arXiv:1710.07988] [INSPIRE].
  7. [7]
    A.S. Barabash, Average and recommended half-life values for two neutrino double beta decay, Nucl. Phys.A 935 (2015) 52 [arXiv:1501.05133] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    E. Majorana, Teoria simmetrica dell’elettrone e del positrone, Nuovo Cim.14 (1937) 171 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    S.M. Bilenky, A. Faessler, W. Potzel and F. Šimkovic, Neutrinoless double-beta decay and seesaw mechanism, Eur. Phys. J.C 71 (2011) 1754 [arXiv:1104.1952] [INSPIRE].
  10. [10]
    M. Fukugita and T. Yanagida, Baryogenesis Without Grand Unification, Phys. Lett.B 174 (1986) 45 [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    S. Dell’Oro, S. Marcocci and F. Vissani, Testing creation of matter with neutrinoless double beta decay, PoS(NEUTEL2017)030 (2018) [arXiv:1710.06732] [INSPIRE].
  12. [12]
    S. Weinberg, Baryon and Lepton Nonconserving Processes, Phys. Rev. Lett.43 (1979) 1566 [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    V. Cirigliano, W. Dekens, J. de Vries, M.L. Graesser and E. Mereghetti, A neutrinoless double beta decay master formula from effective field theory, JHEP12 (2018) 097 [arXiv:1806.02780] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    Particle Data Group, Review of Particle Physics, Phys. Rev.D 98 (2018) 030001 [INSPIRE].
  15. [15]
    EXO-200 collaboration, Search for Neutrinoless Double-Beta Decay in 136Xe with EXO-200, Phys. Rev. Lett.109 (2012) 032505 [arXiv:1205.5608] [INSPIRE].
  16. [16]
    Majorana collaboration, Search for Neutrinoless Double-β Decay in 76Ge with the Majorana Demonstrator, Phys. Rev. Lett.120 (2018) 132502 [arXiv:1710.11608] [INSPIRE].
  17. [17]
    NEMO-3 collaboration, Results of the search for neutrinoless double-β decay in 100Mo with the NEMO-3 experiment, Phys. Rev.D 92 (2015) 072011 [arXiv:1506.05825] [INSPIRE].
  18. [18]
    J. Engel and J. Menéndez, Status and Future of Nuclear Matrix Elements for Neutrinoless Double-Beta Decay: A Review, Rept. Prog. Phys.80 (2017) 046301 [arXiv:1610.06548] [INSPIRE].
  19. [19]
    J.T. Suhonen, Value of the Axial-Vector Coupling Strength in β and ββ Decays: A Review, Front. Phys.5 (2017) 55 [arXiv:1712.01565] [INSPIRE].CrossRefGoogle Scholar
  20. [20]
    A. Giuliani, The Mid and Long Term Future of Neutrinoless Double Beta Decay, talk given at the XXVIII International Conference on Neutrino Physics and Astrophysics NEUTRINO 2018, Heidelberg, Germany, 4–9 June 2018.Google Scholar
  21. [21]
    A.S. Barabash, Possibilities of future double beta decay experiments to investigate inverted and normal ordering region of neutrino mass, Front. Phys.6 (2019) 160 [arXiv:1901.11342] [INSPIRE].CrossRefGoogle Scholar
  22. [22]
    NOvA collaboration, New constraints on oscillation parameters from ν eappearance and ν μdisappearance in the NOvA experiment, Phys. Rev.D 98 (2018) 032012 [arXiv:1806.00096] [INSPIRE].
  23. [23]
    N. Palanque-Delabrouille et al., Neutrino masses and cosmology with Lyman-alpha forest power spectrum, JCAP11 (2015) 011 [arXiv:1506.05976] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    M. Agostini, G. Benato and J.A. Detwiler, Discovery probability of next-generation neutrinoless double-β decay experiments, Phys. Rev.D 96 (2017) 053001 [arXiv:1705.02996] [INSPIRE].
  25. [25]
    A. Giuliani and A. Poves, Neutrinoless Double-Beta Decay, Adv. High Energy Phys.2012 (2012) 857016 [INSPIRE].CrossRefGoogle Scholar
  26. [26]
    O. Cremonesi and M. Pavan, Challenges in Double Beta Decay, Adv. High Energy Phys.2014 (2014) 951432 [arXiv:1310.4692] [INSPIRE].CrossRefGoogle Scholar
  27. [27]
    E. Fiorini and T.O. Niinikoski, Low-temperature calorimetry for rare decays, Nucl. Instrum. Meth.A 224 (1984) 83 [INSPIRE].CrossRefGoogle Scholar
  28. [28]
    D. Poda and A. Giuliani, Low background techniques in bolometers for double-beta decay search, Int. J. Mod. Phys.A 32 (2017) 1743012 [arXiv:1711.01075] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    E.E. Haller, N.P. Palaio, M. Rodder, W.L. Hansen and E. Kreysa, NTD Germanium: A Novel Material for Low Temperature Bolometers, in Neutron Transmutation Doping of Semiconductor Materials, R.D. Larrabee ed., Springer U.S., Boston MA U.S.A. (1984), pp. 21–36.CrossRefGoogle Scholar
  30. [30]
    L. Dumoulin, L. Bergé, J. Lesueur, H. Bernas and M. Chapellier, Nb-Si thin films as thermometers for low temperature bolometers, J. Low Temp. Phys.93 (1993) 301.Google Scholar
  31. [31]
    O. Crauste et al., Tunable Superconducting Properties of a-NbSi Thin Films and Application to Detection in Astrophysics, J. Low Temp. Phys.163 (2011) 60.ADSCrossRefGoogle Scholar
  32. [32]
    S. Pirro, S. Capelli, M. Pavan, E. Previtali, J.W. Beeman and P. Gorla, Scintillating double beta decay bolometers, Phys. Atom. Nucl.69 (2006) 2109 [nucl-ex/0510074] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    T. Tabarelli de Fatis, Cerenkov emission as a positive tag of double beta decays in bolometric experiments, Eur. Phys. J.C 65 (2010) 359 [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    CUORE collaboration, Exploring the Neutrinoless Double Beta Decay in the Inverted Neutrino Hierarchy with Bolometric Detectors, Eur. Phys. J.C 74 (2014) 3096 [arXiv:1404.4469] [INSPIRE].
  35. [35]
    CUORE collaboration, Status and results of the CUORE experiment, talk given at MEDEX 2019, Matrix Elements for the Double beta decay EXperiments, Prague, Czech Republic, 27–31 May 2019.Google Scholar
  36. [36]
    MI-BETA collaboration, A Calorimetric search on double beta decay of 130Te, Phys. Lett.B 557 (2003) 167 [hep-ex/0211071] [INSPIRE].
  37. [37]
    CUORICINO collaboration, Results from a search for the 0 neutrino beta beta-decay of 130Te, Phys. Rev.C 78 (2008) 035502 [arXiv:0802.3439] [INSPIRE].
  38. [38]
    CUPID-0 collaboration, First Result on the Neutrinoless Double-β Decay of 82Se with CUPID-0, Phys. Rev. Lett.120 (2018) 232502 [arXiv:1802.07791] [INSPIRE].
  39. [39]
    LUMINEU-EDELWEISS collaboration, Development of 100Mo-containing scintillating bolometers for a high-sensitivity neutrinoless double-beta decay search, Eur. Phys. J.C 77 (2017) 785 [arXiv:1704.01758] [INSPIRE].
  40. [40]
    CUPID-Mo collaboration, The CUPID-Mo experiment for neutrinoless double-beta decay: performance and prospects, arXiv:1909.02994 [INSPIRE].
  41. [41]
    CUORE collaboration, CUORE crystal validation runs: results on radioactive contamination and extrapolation to CUORE background, Astropart. Phys.35 (2012) 839 [arXiv:1108.4757] [INSPIRE].
  42. [42]
    LUMINEU, CUPID-0/Mo and EDELWEISS collaborations, 100Mo-enriched Li 2MoO 4scintillating bolometers for 0ν2β decay search: From LUMINEU to CUPID-0/Mo projects, AIP Conf. Proc.1894 (2017) 020017 [arXiv:1709.07846] [INSPIRE].
  43. [43]
    D.R. Artusa et al., Enriched TeO 2bolometers with active particle discrimination: towards the CUPID experiment, Phys. Lett.B 767 (2017) 321 [arXiv:1610.03513] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    N. Coron, G. Dambier, E. Leblanc, J. Leblanc, P. de Marcillac and J.P. Moalic, Scintillating and particle discrimination properties of selected crystals for low-temperature bolometers: From LiF to BGO, Nucl. Instrum. Meth.A 520 (2004) 159 [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    L. Bergé et al., Complete event-by-event α/γ(β) separation in a full-size TeO 2CUORE bolometer by Neganov-Luke-magnified light detection, Phys. Rev.C 97 (2018) 032501(R) [arXiv:1710.03459] [INSPIRE].
  46. [46]
    T.B. Bekker et al., Aboveground test of an advanced Li 2MoO 4scintillating bolometer to search for neutrinoless double beta decay of 100Mo, Astropart. Phys.72 (2016) 38 [arXiv:1410.6933] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    LUMINEU collaboration, Purification of molybdenum, growth and characterization of medium volume ZnMoO 4crystals for the LUMINEU program, 2014 JINST9 P06004 [INSPIRE].
  48. [48]
    V.D. Grigorieva et al., Li 2MoO 4crystals grown by low thermal gradient Czochralski technique, J. Mat. Sci. Eng.B 7 (2017) 63.Google Scholar
  49. [49]
    D.M. Chernyak, F.A. Danevich, A. Giuliani, E. Olivieri, M. Tenconi and V.I. Tretyak, Random coincidence of 2ν2β decay events as a background source in bolometric 0ν2β decay experiments, Eur. Phys. J.C 72 (2012) 1989 [arXiv:1301.4248] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    J. Meija et al., Isotopic compositions of the elements 2013 (IUPAC Technical Report), Pure Appl. Chem.88 (2016) 293.Google Scholar
  51. [51]
    A. Giuliani, F.A. Danevich and V.I. Tretyak, A multi-isotope 0ν2β bolometric experiment, Eur. Phys. J.C 78 (2018) 272 [arXiv:1712.08534] [INSPIRE].CrossRefGoogle Scholar
  52. [52]
    CUPID collaboration, CUPID pre-CDR, arXiv:1907.09376 [INSPIRE].
  53. [53]
    D.M. Chernyak et al., Rejection of randomly coinciding events in ZnMoO 4scintillating bolometers, Eur. Phys. J.C 74 (2014) 2913 [arXiv:1404.1231] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    J.F. Cochran and D.E. Mapother, Superconducting transition in aluminum, Phys. Rev.111 (1958) 132.ADSCrossRefGoogle Scholar
  55. [55]
    C. Nones, L. Bergé, L. Dumoulin, S. Marnieros and E. Olivieri, Superconducting Aluminum Layers as Pulse Shape Modifiers: An Innovative Solution to Fight Against Surface Background in Neutrinoless Double Beta Decay Experiments, J. Low Temp. Phys.167 (2012) 1029 [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    S.-I. Tamura, Numerical evidence for the bottleneck frequency of quasidiffusive acoustic phonons, Phys. Rev.B 56 (1997) 13630.ADSCrossRefGoogle Scholar
  57. [57]
    R. Orbach and L.A. Vredevoe, The attenuation of high frequency phonons at low temperatures, Physics Physique Fizika1 (1964) 91.MathSciNetCrossRefGoogle Scholar
  58. [58]
    J. Schnagl et al., First tests on phonon threshold spectroscopy, Nucl. Instrum. Meth.A 444 (2000) 245.ADSCrossRefGoogle Scholar
  59. [59]
    V. Novati et al., Charge-to-heat transducers exploiting the Neganov-Trofimov-Luke effect for light detection in rare-event searches, Nucl. Instrum. Meth.A 940 (2019) 320 [arXiv:1906.11506] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    A. Alessandrello et al., Methods for response stabilization in bolometers for rare decays, Nucl. Instrum. Meth.A 412 (1998) 454 [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    M. Mancuso et al., An aboveground pulse-tube-based bolometric test facility for the validation of the LUMINEU ZnMoO 4crystals, J. Low Temp. Phys.176 (2014) 571 [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    C. Arnaboldi et al., The programmable front-end system for CUORICINO, an array of large-mass bolometers, IEEE Trans. Nucl. Sci.49 (2002) 2440 [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    E. Gatti and P.F. Manfredi, Processing the signals from solid-state detectors in elementary-particle physics, Riv. Nuovo Cim.9 (1986) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    F. Bellini et al., Response of a TeO 2bolometer to alpha particles, 2010 JINST5 P12005 [arXiv:1010.2618] [INSPIRE].
  65. [65]
    GEANT4 collaboration, GEANT4: A Simulation toolkit, Nucl. Instrum. Meth.A 506 (2003) 250 [INSPIRE].
  66. [66]
    J. Allison et al., Geant4 developments and applications, IEEE Trans. Nucl. Sci.53 (2006) 270 [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    M.B. Chadwick et al., ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data, Nucl. Data Sheets112 (2011) 2887 [INSPIRE].
  68. [68]
    J.W. Beeman et al., Potential of a next generation neutrinoless double beta decay experiment based on ZnMoO 4scintillating bolometers, Phys. Lett.B 710 (2012) 318 [arXiv:1112.3672] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    CUORE collaboration, Search for Neutrinoless Double-Beta Decay of 130Te with CUORE-0, Phys. Rev. Lett.115 (2015) 102502 [arXiv:1504.02454] [INSPIRE].
  70. [70]
    CUPID collaboration, Background Model of the CUPID-0 Experiment, Eur. Phys. J.C 79 (2019) 583 [arXiv:1904.10397] [INSPIRE].
  71. [71]
    G.J. Feldman and R.D. Cousins, A Unified approach to the classical statistical analysis of small signals, Phys. Rev.D 57 (1998) 3873 [physics/9711021] [INSPIRE].
  72. [72]
    F. Šimkovic, V. Rodin, A. Faessler and P. Vogel, 0νββ and 2νββ nuclear matrix elements, quasiparticle random-phase approximation and isospin symmetry restoration, Phys. Rev.C 87 (2013) 045501 [arXiv:1302.1509] [INSPIRE].
  73. [73]
    J. Hyvärinen and J. Suhonen, Nuclear matrix elements for 0νββ decays with light or heavy Majorana-neutrino exchange, Phys. Rev.C 91 (2015) 024613 [INSPIRE].
  74. [74]
    J. Barea, J. Kotila and F. Iachello, 0νββ and 2νββ nuclear matrix elements in the interacting boson model with isospin restoration, Phys. Rev.C 91 (2015) 034304 [arXiv:1506.08530] [INSPIRE].
  75. [75]
    N. López Vaquero, T.R. Rodríguez and J.L. Egido, Shape and pairing fluctuations effects on neutrinoless double beta decay nuclear matrix elements, Phys. Rev. Lett.111 (2013) 142501 [arXiv:1401.0650] [INSPIRE].
  76. [76]
    J.M. Yao, L.S. Song, K. Hagino, P. Ring and J. Meng, Systematic study of nuclear matrix elements in neutrinoless double-β decay with a beyond-mean-field covariant density functional theory, Phys. Rev.C 91 (2015) 024316 [arXiv:1410.6326] [INSPIRE].
  77. [77]
    CUPID collaboration, CUPID: CUORE (Cryogenic Underground Observatory for Rare Events) Upgrade with Particle IDentification, arXiv:1504.03599 [INSPIRE].

Copyright information

© The Author(s) 2020

Authors and Affiliations

  • The CROSS collaboration
  • I. C. Bandac
    • 1
  • A. S. Barabash
    • 2
  • L. Bergé
    • 3
  • M. Brière
    • 4
  • C. Bourgeois
    • 4
  • P. Carniti
    • 5
  • M. Chapellier
    • 3
  • M. de Combarieu
    • 6
  • I. Dafinei
    • 7
  • F. A. Danevich
    • 8
  • N. Dosme
    • 3
  • D. Doullet
    • 4
  • L. Dumoulin
    • 3
  • F. Ferri
    • 9
  • A. Giuliani
    • 3
    • 10
    Email author
  • C. Gotti
    • 5
  • P. Gras
    • 9
  • E. Guerard
    • 4
  • A. Ianni
    • 11
  • H. Khalife
    • 3
  • S. I. Konovalov
    • 2
  • E. Legay
    • 3
  • P. Loaiza
    • 4
  • P. de Marcillac
    • 3
  • S. Marnieros
    • 3
  • C. A. Marrache-Kikuchi
    • 3
  • C. Nones
    • 9
  • V. Novati
    • 3
  • E. Olivieri
    • 3
  • C. Oriol
    • 3
  • G. Pessina
    • 5
  • D. V. Poda
    • 3
  • T. Redon
    • 3
  • V. I. Tretyak
    • 8
  • V. I. Umatov
    • 2
  • M. M. Zarytsky
    • 8
  • A. S. Zolotarova
    • 3
  1. 1.Laboratorio Subterráneo de Canfranc, Camino de los AyerbesCanfranc-EstaciónSpain
  2. 2.National Research Centre Kurchatov InstituteInstitute of Theoretical and Experimental PhysicsMoscowRussia
  3. 3.CSNSM, Université Paris-Sud, CNRS/IN2P3, Université Paris-SaclayOrsayFrance
  4. 4.LAL, Université Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Bâtiment 200, Centre Scientifique d’OrsayOrsayFrance
  5. 5.INFN, Sezione di Milano BicoccaMilanoItaly
  6. 6.IRAMIS, CEA, Université Paris-Saclay, Bâtiment 462, Centre CEA-SaclayGif-sur-YvetteFrance
  7. 7.INFN, Sezione di RomaRomeItaly
  8. 8.Institute for Nuclear ResearchKyivUkraine
  9. 9.IRFU, CEA, Université Paris-Saclay, Bâtiment 141, Centre CEA-SaclayGif-sur-YvetteFrance
  10. 10.DISAT, Università dell’InsubriaComoItaly
  11. 11.INFN, Laboratori Nazionali del Gran SassoL’AquilaItaly

Personalised recommendations