Advertisement

Journal of High Energy Physics

, 2019:234 | Cite as

Modular forms in the spectral action of Bianchi IX gravitational instantons

  • Wentao Fan
  • Farzad FathizadehEmail author
  • Matilde Marcolli
Open Access
Regular Article - Theoretical Physics
  • 49 Downloads

Abstract

We prove a modularity property for the heat kernel and the Seeley-deWitt coefficients of the heat kernel expansion for the Dirac-Laplacian on the Bianchi IX gravitational instantons. We prove, via an isospectrality result for the Dirac operators, that each term in the expansion is a vector-valued modular form, with an associated ordinary (meromorphic) modular form of weight 2. We discuss explicit examples related to well known modular forms. Our results show the existence of arithmetic structures in Euclidean gravity models based on the spectral action functional.

Keywords

Models of Quantum Gravity Non-Commutative Geometry 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    P. Amsterdamski, A.L. Berkin and D.J. O’Connor, b 8 ‘Hamidew’ coefficient for a scalar field, Class. Quant. Grav. 6 (1989) 1981 [INSPIRE].
  2. [2]
    I.G. Avramidi, Heat kernel and quantum gravity, Lect. Notes Phys. Monogr. 64 (2000) 1 [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    I.G. Avramidi, Heat kernel method and its applications, Springer, Cham, Switzerland (2015).Google Scholar
  4. [4]
    M.V. Babich and D.A. Korotkin, Selfdual SU(2) invariant Einstein metrics and modular dependence of theta functions, Lett. Math. Phys. 46 (1998) 323 [gr-qc/9810025] [INSPIRE].
  5. [5]
    P. Bantay and T. Gannon, Vector-valued modular functions for the modular group and the hypergeometric equation, Commun. Number Theor. Phys. 1 (2007) 651.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    A.O. Barvinsky and A. Yu. Kamenshchik, Tunneling geometries. 1. Analyticity, unitarity and instantons in quantum cosmology, Phys. Rev. D 50 (1994) 5093 [gr-qc/9311022] [INSPIRE].
  7. [7]
    L. Boutet de Monvel, Boundary problems for pseudo-differential operators, Acta Math. 126 (1971) 11.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    A.H. Chamseddine and A. Connes, Spectral action for Robertson-Walker metrics, JHEP 10 (2012) 101 [arXiv:1105.4637] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    A.H. Chamseddine and A. Connes, Noncommutative geometric spaces with boundary: spectral action, J. Geom. Phys. 61 (2011) 317 [arXiv:1008.3980] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    A.H. Chamseddine and A. Connes, The spectral action principle, Commun. Math. Phys. 186 (1997) 731 [hep-th/9606001] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    J.M. Charap and M.J. Duff, Gravitational effects on Yang-Mills topology, Phys. Lett. B 69 (1977) 445 [INSPIRE].
  12. [12]
    A. Connes and M. Marcolli, Noncommutative geometry, quantum fields and motives, Amer. Math. Soc. Coll. Publ. 55, American Mathematical Society, U.S.A. (2007).Google Scholar
  13. [13]
    T. Eguchi and A.J. Hanson, Selfdual solutions to Euclidean gravity, Annals Phys. 120 (1979) 82 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  14. [14]
    M. Eichler and D. Zagier, The theory of Jacobi forms, Prog. Math. 55, Birkhäuser, Boston, MA, U.S.A. (1985).Google Scholar
  15. [15]
    L.-Z. Fang and R. Ruffini eds., Quantum cosmology, World Scientific, Singapore (1987).Google Scholar
  16. [16]
    W. Fan, F. Fathizadeh and M. Marcolli, Spectral action for Bianchi type-IX cosmological models, JHEP 10 (2015) 085 [arXiv:1506.06779] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    W. Fan, F. Fathizadeh and M. Marcolli, Motives and periods in Bianchi IX gravity models, Lett. Math. Phys. 108 (2018) 2729 [arXiv:1709.08082] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    S. Farinelli and G. Schwarz, On the spectrum of the Dirac operator under boundary conditions, J. Geom. Phys. 28 (1998) 67.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    F. Fathizadeh, A. Ghorbanpour and M. Khalkhali, Rationality of spectral action for Robertson-Walker metrics, JHEP 12 (2014) 064 [arXiv:1407.5972] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    F. Fathizadeh, Y. Kafkoulis and M. Marcolli, Bell polynomials and Brownian bridge in spectral gravity models on multifractal Robertson-Walker cosmologies, arXiv:1811.02972 [INSPIRE].
  21. [21]
    F. Fathizadeh and M. Marcolli, Periods and motives in the spectral action of Robertson-Walker spacetimes, Commun. Math. Phys. 356 (2017) 641 [arXiv:1611.01815] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    P. Gilkey, Invariance theory, the heat equation, and the Atiyah-Singer index theorem, Math. Lect. Ser. 11, Publish or Perish Inc., Wilmington, DE, U.S.A. (1984).Google Scholar
  23. [23]
    J.J. Halliwell, Derivation of the Wheeler-DeWitt equation from a path integral for minisuperspace models, Phys. Rev. D 38 (1988) 2468 [INSPIRE].
  24. [24]
    J.J. Halliwell and J. Louko, Steepest descent contours in the path integral approach to quantum cosmology. 1. The de Sitter minisuperspace model, Phys. Rev. D 39 (1989) 2206 [INSPIRE].
  25. [25]
    N.J. Hitchin, Twistor spaces, Einstein metrics and isomonodromic deformations, J. Diff. Geom. 42 (1995) 30.MathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    K. Kirsten and F.L. Williams eds., A window into zeta and modular physics, Math. Sci. Res. Inst. Publ. 57, Cambridge University Press, Cambridge, U.K. (2010).Google Scholar
  27. [27]
    A. Kitaev and D. Korotkin, On solutions of the Schlesinger equations in terms of Θ-functions, Int. Math. Res. Not. 1998 (1998) 877.Google Scholar
  28. [28]
    M. Knopp and G. Mason, Vector-valued modular forms and Poincaré series, Illinois J. Math. 48 (2004) 1345.MathSciNetzbMATHGoogle Scholar
  29. [29]
    H.B. Lawson and M.-L. Michelsohn, Spin geometry, Princeton Math. Ser. 38, Princeton University Press, Princeton, NJ, U.S.A. (1990).Google Scholar
  30. [30]
    Y.I. Manin and M. Marcolli, Symbolic dynamics, modular curves, and Bianchi IX cosmologies, Ann. Fac. Sci. Toulouse Math. 25 (2016) 517 [arXiv:1504.04005] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    Y.I. Manin and M. Marcolli, Big bang, blowup and modular curves: algebraic geometry in cosmology, SIGMA 10 (2014) 073 [arXiv:1402.2158] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  32. [32]
    M. Marcolli, Noncommutative cosmology, World Scientific, Singapore (2018).Google Scholar
  33. [33]
    M. Marcolli, Feynman motives, World Scientific, Singapore (2009).Google Scholar
  34. [34]
    G. Mason, Vector-valued modular forms and linear differential operators, Int. J. Number Theor. 03 (2007) 377.MathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    S. Mukherjee and B.C. Paul, Gravitational instantons: recent developments, Mod. Phys. Lett. A 17 (2002) 1123 [INSPIRE].
  36. [36]
    P.M. Petropoulos and P. Vanhove, Gravity, strings, modular and quasimodular forms, Ann. Math. Blaise Pascal 19 (2012) 379.MathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    J.-P. Serre, A course in arithmetic, Springer, New York, NY, U.S.A. (1973).Google Scholar
  38. [38]
    W. Stein, Modular forms, a computational approach, Grad. Stud. Math. 79, American Mathematical Society, U.S.A. (2007).Google Scholar
  39. [39]
    K. Tod, Self-dual Einstein metrics from the Painlevé VI equation, Phys. Lett. A 190 (1994) 221.Google Scholar
  40. [40]
    A.E.M. van de Ven, Index free heat kernel coefficients, Class. Quant. Grav. 15 (1998) 2311 [hep-th/9708152] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. [41]
    W.D. van Suijlekom, Noncommutative geometry and particle physics, Springer, Dordrecht, The Netherlands (2015).Google Scholar
  42. [42]
    D.V. Vassilevich, Heat kernel expansion: user’s manual, Phys. Rept. 388 (2003) 279 [hep-th/0306138] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  43. [43]
    M. Wodzicki, Local invariants of spectral asymmetry, Invent. Math. 75 (1984) 143.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    M. Wodzicki, Noncommutative residue. Chapter I. Fundamentals, in K-theory, arithmetic and geometry, Lect. Notes Math. 1289, Springer, Berlin Heidelberg, Germany (1987), pg. 320.Google Scholar
  45. [45]
    D. Zagier, Elliptic modular forms and their applications, in The 1-2-3 of modular forms, Springer, Berlin Heidelberg, Germany (2008), pg. 1.Google Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Wentao Fan
    • 1
    • 2
  • Farzad Fathizadeh
    • 2
    • 3
    • 4
    Email author
  • Matilde Marcolli
    • 2
    • 5
    • 6
  1. 1.Department of PhysicsPrinceton UniversityPrincetonU.S.A.
  2. 2.Division of Physics, Mathematics and AstronomyCalifornia Institute of TechnologyPasadenaU.S.A.
  3. 3.Department of Mathematics, Computational FoundrySwansea UniversitySwanseaU.K.
  4. 4.Max Planck Institute for Biological CyberneticsTübingenGermany
  5. 5.Department of MathematicsUniversity of TorontoTorontoCanada
  6. 6.Perimeter Institute for Theoretical PhysicsWaterlooCanada

Personalised recommendations