Advertisement

Journal of High Energy Physics

, 2019:232 | Cite as

Information flows in strongly coupled ABJM theory

  • Vijay Balasubramanian
  • Niko JokelaEmail author
  • Arttu Pönni
  • Alfonso V. Ramallo
Open Access
Regular Article - Theoretical Physics
  • 25 Downloads

Abstract

We use holographic methods to characterize the RG flow of quantum information in a Chern-Simons theory coupled to massive fermions. First, we use entanglement entropy and mutual information between strips to derive the dimension of the RG-driving operator and a monotonic c-function. We then display a scaling regime where, unlike in a CFT, the mutual information between strips changes non-monotonically with strip width, vanishing in both IR and UV but rising to a maximum at intermediate scales. The associated information transitions also contribute to non-monotonicity in the conditional mutual information which characterizes the independence of neighboring strips after conditioning on a third. Finally, we construct a measure of extensivity which tests to what extent information that region A shares with regions B and C is additive. In general, mutual information is super-extensive in holographic theories, and we might expect super-extensivity to be maximized in CFTs since they are scale-free. Surprisingly, our massive theory is more super-extensive than a CFT in a range of scales near the UV limit, although it is less super-extensive than a CFT at all lower scales. Our analysis requires the full ten-dimensional dual gravity background, and the extremal surfaces computing entanglement entropy explore all of these dimensions.

Keywords

AdS-CFT Correspondence D-branes 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].
  2. [2]
    S. Hohenegger and I. Kirsch, A Note on the holography of Chern-Simons matter theories with flavour, JHEP 04 (2009) 129 [arXiv:0903.1730] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    D. Gaiotto and D.L. Jafferis, Notes on adding D6 branes wrapping Rp 3 in AdS 4 × CP 3, JHEP 11 (2012) 015 [arXiv:0903.2175] [INSPIRE].
  4. [4]
    G. Veneziano, Some Aspects of a Unified Approach to Gauge, Dual and Gribov Theories, Nucl. Phys. B 117 (1976) 519 [INSPIRE].
  5. [5]
    C. Núñez, A. Paredes and A.V. Ramallo, Unquenched Flavor in the Gauge/Gravity Correspondence, Adv. High Energy Phys. 2010 (2010) 196714 [arXiv:1002.1088] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    E. Conde and A.V. Ramallo, On the gravity dual of Chern-Simons-matter theories with unquenched flavor, JHEP 07 (2011) 099 [arXiv:1105.6045] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    N. Jokela, J. Mas, A.V. Ramallo and D. Zoakos, Thermodynamics of the brane in Chern-Simons matter theories with flavor, JHEP 02 (2013) 144 [arXiv:1211.0630] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    Y. Bea, N. Jokela, M. Lippert, A.V. Ramallo and D. Zoakos, Flux and Hall states in ABJM with dynamical flavors, JHEP 03 (2015) 009 [arXiv:1411.3335] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    Y. Bea, E. Conde, N. Jokela and A.V. Ramallo, Unquenched massive flavors and flows in Chern-Simons matter theories, JHEP 12 (2013) 033 [arXiv:1309.4453] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    Y. Bea, N. Jokela, A. Pönni and A.V. Ramallo, Noncommutative massive unquenched ABJM, Int. J. Mod. Phys. A 33 (2018) 1850078 [arXiv:1712.03285] [INSPIRE].
  11. [11]
    K. Hosomichi, K.-M. Lee, S. Lee, S. Lee and J. Park, N = 5, 6 Superconformal Chern-Simons Theories and M2-branes on Orbifolds, JHEP 09 (2008) 002 [arXiv:0806.4977] [INSPIRE].
  12. [12]
    J. Gomis, D. Rodriguez-Gomez, M. Van Raamsdonk and H. Verlinde, A Massive Study of M2-brane Proposals, JHEP 09 (2008) 113 [arXiv:0807.1074] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    K.K. Kim, O.-K. Kwon, C. Park and H. Shin, Renormalized Entanglement Entropy Flow in Mass-deformed ABJM Theory, Phys. Rev. D 90 (2014) 046006 [arXiv:1404.1044] [INSPIRE].
  14. [14]
    K.K. Kim, O.-K. Kwon, C. Park and H. Shin, Holographic entanglement entropy of mass-deformed Aharony-Bergman-Jafferis-Maldacena theory, Phys. Rev. D 90 (2014) 126003 [arXiv:1407.6511] [INSPIRE].
  15. [15]
    P.A.R. Jones and M. Taylor, Entanglement entropy in top-down models, JHEP 08 (2016) 158 [arXiv:1602.04825] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    V. Balasubramanian, A. Lawrence, A. Rolph and S. Ross, Entanglement shadows in LLM geometries, JHEP 11 (2017) 159 [arXiv:1704.03448] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    N. Jokela, A.V. Ramallo and D. Zoakos, Magnetic catalysis in flavored ABJM, JHEP 02 (2014) 021 [arXiv:1311.6265] [INSPIRE].ADSGoogle Scholar
  18. [18]
    Y. Bea, Holographic duality and applications, Ph.D. Thesis, Santiago de Compostela University, Santiago de Compostela Spain (2016) [arXiv:1612.00247] [INSPIRE].
  19. [19]
    A. Karch and E. Katz, Adding flavor to AdS/CFT, JHEP 06 (2002) 043 [hep-th/0205236] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    J. Erdmenger, N. Evans, I. Kirsch and E. Threlfall, Mesons in Gauge/Gravity Duals — A Review, Eur. Phys. J. A 35 (2008) 81 [arXiv:0711.4467] [INSPIRE].
  21. [21]
    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    I.R. Klebanov, T. Nishioka, S.S. Pufu and B.R. Safdi, On Shape Dependence and RG Flow of Entanglement Entropy, JHEP 07 (2012) 001 [arXiv:1204.4160] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  23. [23]
    M. Alishahiha, M.R. Mohammadi Mozaffar and M.R. Tanhayi, On the Time Evolution of Holographic n-partite Information, JHEP 09 (2015) 165 [arXiv:1406.7677] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    O. Ben-Ami, D. Carmi and J. Sonnenschein, Holographic Entanglement Entropy of Multiple Strips, JHEP 11 (2014) 144 [arXiv:1409.6305] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    H. Liu and M. Mezei, A Refinement of entanglement entropy and the number of degrees of freedom, JHEP 04 (2013) 162 [arXiv:1202.2070] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    H. Liu and M. Mezei, Probing renormalization group flows using entanglement entropy, JHEP 01 (2014) 098 [arXiv:1309.6935] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    V. Balasubramanian, B.D. Chowdhury, B. Czech, J. de Boer and M.P. Heller, Bulk curves from boundary data in holography, Phys. Rev. D 89 (2014) 086004 [arXiv:1310.4204] [INSPIRE].
  28. [28]
    M. Headrick, R.C. Myers and J. Wien, Holographic Holes and Differential Entropy, JHEP 10 (2014) 149 [arXiv:1408.4770] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    P.A.R. Jones and M. Taylor, Entanglement entropy and differential entropy for massive flavors, JHEP 08 (2015) 014 [arXiv:1505.07697] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    E. Conde, J. Gaillard and A.V. Ramallo, On the holographic dual of N = 1 SQCD with massive flavors, JHEP 10 (2011) 023 [Erratum ibid. 1308 (2013) 082] [arXiv:1107.3803] [INSPIRE].
  31. [31]
    H. Casini, M. Huerta, R.C. Myers and A. Yale, Mutual information and the F-theorem, JHEP 10 (2015) 003 [arXiv:1506.06195] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    H. Casini and M. Huerta, Remarks on the entanglement entropy for disconnected regions, JHEP 03 (2009) 048 [arXiv:0812.1773] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    P. Hayden, M. Headrick and A. Maloney, Holographic Mutual Information is Monogamous, Phys. Rev. D 87 (2013) 046003 [arXiv:1107.2940] [INSPIRE].
  34. [34]
    V. Balasubramanian, P. Hayden, A. Maloney, D. Marolf and S.F. Ross, Multiboundary Wormholes and Holographic Entanglement, Class. Quant. Grav. 31 (2014) 185015 [arXiv:1406.2663] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  35. [35]
    M. Headrick and T. Takayanagi, A Holographic proof of the strong subadditivity of entanglement entropy, Phys. Rev. D 76 (2007) 106013 [arXiv:0704.3719] [INSPIRE].
  36. [36]
    N. Bao, S. Nezami, H. Ooguri, B. Stoica, J. Sully and M. Walter, The Holographic Entropy Cone, JHEP 09 (2015) 130 [arXiv:1505.07839] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    M. Freedman and M. Headrick, Bit threads and holographic entanglement, Commun. Math. Phys. 352 (2017) 407 [arXiv:1604.00354] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    J.K. Ghosh, E. Kiritsis, F. Nitti and L.T. Witkowski, Holographic RG flows on curved manifolds and the F -theorem, arXiv:1810.12318 [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.David Rittenhouse LaboratoryUniversity of PennsylvaniaPhiladelphiaU.S.A.
  2. 2.Theoretische Natuurkunde, Vrije Universiteit Brussel and International Solvay InstitutesBrusselsBelgium
  3. 3.Department of PhysicsUniversity of HelsinkiHelsinkiFinland
  4. 4.Helsinki Institute of PhysicsUniversity of HelsinkiHelsinkiFinland
  5. 5.Departamento de Física de PartículasUniversidade de Santiago de CompostelaSantiago de CompostelaSpain
  6. 6.Instituto Galego de Física de Altas EnerxíasUniversidade de Santiago de CompostelaSantiago de CompostelaSpain

Personalised recommendations