Journal of High Energy Physics

, 2019:227 | Cite as

Gluon fragmentation into quarkonium at next-to-leading order using FKS subtraction

  • Pierre Artoisenet
  • Eric BraatenEmail author
Open Access
Regular Article - Theoretical Physics


We present the calculation at next-to-leading order (NLO) in αs of the fragmentation function of a gluon into heavy quarkonium in the color-octet spin-singlet S-wave channel. To calculate the real NLO corrections, we adapt a subtraction scheme introduced by Frixione, Kunszt, and Signer. Ultraviolet and infrared divergences in the real NLO corrections are calculated analytically by evaluating the phase-space integrals of the subtraction terms using dimensional regularization. The subtracted phase-space integrals are then evaluated in 4 space-time dimensions. The divergences in the virtual NLO corrections are also calculated analytically. After renormalization, all the divergences cancel. The NLO corrections significantly increase the fragmentation probability for a gluon into the spin-singlet quarkonium states ηc and ηb.


NLO Computations 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    J.C. Collins and D.E. Soper, Parton Distribution and Decay Functions, Nucl. Phys. B 194 (1982) 445 [INSPIRE].
  2. [2]
    G.C. Nayak, J.-W. Qiu and G.F. Sterman, Fragmentation, NRQCD and NNLO factorization analysis in heavy quarkonium production, Phys. Rev. D 72 (2005) 114012 [hep-ph/0509021] [INSPIRE].
  3. [3]
    G.T. Bodwin, E. Braaten and G.P. Lepage, Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium, Phys. Rev. D 51 (1995) 1125 [Erratum ibid. D 55 (1997) 5853] [hep-ph/9407339] [INSPIRE].
  4. [4]
    G.T. Bodwin, E. Braaten, E. Eichten, S.L. Olsen, T.K. Pedlar and J. Russ, Quarkonium at the Frontiers of High Energy Physics: A Snowmass White Paper, in Proceedings, 2013 Community Summer Study on the Future of U.S. Particle Physics: Snowmass on the Mississippi (CSS2013), Minneapolis, MN, U.S.A., July 29-August 6, 2013 (2013) [arXiv:1307.7425] [INSPIRE].
  5. [5]
    Z.-B. Kang, J.-W. Qiu and G. Sterman, Heavy quarkonium production and polarization, Phys. Rev. Lett. 108 (2012) 102002 [arXiv:1109.1520] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    Z.-B. Kang, Y.-Q. Ma, J.-W. Qiu and G. Sterman, Heavy Quarkonium Production at Collider Energies: Factorization and Evolution, Phys. Rev. D 90 (2014) 034006 [arXiv:1401.0923] [INSPIRE].
  7. [7]
    Z.-B. Kang, Y.-Q. Ma, J.-W. Qiu and G. Sterman, Heavy Quarkonium Production at Collider Energies: Partonic Cross Section and Polarization, Phys. Rev. D 91 (2015) 014030 [arXiv:1411.2456] [INSPIRE].
  8. [8]
    S. Fleming, A.K. Leibovich, T. Mehen and I.Z. Rothstein, The Systematics of Quarkonium Production at the LHC and Double Parton Fragmentation, Phys. Rev. D 86 (2012) 094012 [arXiv:1207.2578] [INSPIRE].
  9. [9]
    S. Fleming, A.K. Leibovich, T. Mehen and I.Z. Rothstein, Anomalous dimensions of the double parton fragmentation functions, Phys. Rev. D 87 (2013) 074022 [arXiv:1301.3822] [INSPIRE].
  10. [10]
    E. Braaten and J. Lee, Next-to-leading order calculation of the color octet 3 S 1 gluon fragmentation function for heavy quarkonium, Nucl. Phys. B 586 (2000) 427 [hep-ph/0004228] [INSPIRE].
  11. [11]
    Y.-Q. Ma, J.-W. Qiu and H. Zhang, Heavy quarkonium fragmentation functions from a heavy quark pair. I. S wave, Phys. Rev. D 89 (2014) 094029 [arXiv:1311.7078] [INSPIRE].
  12. [12]
    P. Artoisenet and E. Braaten, Gluon fragmentation into quarkonium at next-to-leading order, JHEP 04 (2015) 121 [arXiv:1412.3834] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    S. Catani and M.H. Seymour, A General algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. B 510 (1998) 503] [hep-ph/9605323] [INSPIRE].
  14. [14]
    S. Frixione, Z. Kunszt and A. Signer, Three jet cross-sections to next-to-leading order, Nucl. Phys. B 467 (1996) 399 [hep-ph/9512328] [INSPIRE].
  15. [15]
    R. Frederix, S. Frixione, F. Maltoni and T. Stelzer, Automation of next-to-leading order computations in QCD: The FKS subtraction, JHEP 10 (2009) 003 [arXiv:0908.4272] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    M. Butenschoen, Z.-G. He and B.A. Kniehl, η c production at the LHC challenges nonrelativistic-QCD factorization, Phys. Rev. Lett. 114 (2015) 092004 [arXiv:1411.5287] [INSPIRE].
  17. [17]
    H. Han, Y.-Q. Ma, C. Meng, H.-S. Shao and K.-T. Chao, η c production at LHC and indications on the understanding of J/ψ production, Phys. Rev. Lett. 114 (2015) 092005 [arXiv:1411.7350] [INSPIRE].
  18. [18]
    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: Going Beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  19. [19]
    E. Braaten and T.C. Yuan, Gluon fragmentation into heavy quarkonium, Phys. Rev. Lett. 71 (1993) 1673 [hep-ph/9303205] [INSPIRE].
  20. [20]
    G.P. Lepage, Vegas: an adaptive multidimensional integration program, CLNS-80/447 [INSPIRE].
  21. [21]
    C. Degrande, C. Duhr, B. Fuks, D. Grellscheid, O. Mattelaer and T. Reiter, UFO — The Universal FeynRules Output, Comput. Phys. Commun. 183 (2012) 1201 [arXiv:1108.2040] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    P. de Aquino, W. Link, F. Maltoni, O. Mattelaer and T. Stelzer, ALOHA: Automatic Libraries Of Helicity Amplitudes for Feynman Diagram Computations, Comput. Phys. Commun. 183 (2012) 2254 [arXiv:1108.2041] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Centre for Cosmology, Particle Physics and Phenomenology (CP3)Université catholique de LouvainLouvain-la-NeuveBelgium
  2. 2.Department of PhysicsThe Ohio State UniversityColumbusU.S.A.

Personalised recommendations