Advertisement

Journal of High Energy Physics

, 2019:221 | Cite as

Stable wormholes in scalar-tensor theories

  • Gabriele Franciolini
  • Lam Hui
  • Riccardo Penco
  • Luca SantoniEmail author
  • Enrico Trincherini
Open Access
Regular Article - Theoretical Physics
  • 26 Downloads

Abstract

We reconsider the issue of whether scalar-tensor theories can admit stable wormhole configurations supported by a non-trivial radial profile for the scalar field. Using a recently proposed effective theory for perturbations around static, spherically symmetric backgrounds, we show that scalar-tensor theories of “beyond Horndeski” type can have wormhole solutions that are free of ghost and gradient instabilities. Such solutions are instead forbidden within the more restrictive “Horndeski” class of theories.

Keywords

Classical Theories of Gravity Effective Field Theories Spacetime Singularities 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    A. Einstein and N. Rosen, The particle problem in the general theory of relativity, Phys. Rev. 48 (1935) 73 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  2. [2]
    M.S. Morris and K.S. Thorne, Wormholes in spacetime and their use for interstellar travel: a tool for teaching general relativity, Amer. J. Phys. 56 (1988) 395.Google Scholar
  3. [3]
    M. Visser, Lorentzian wormholes: from Einstein to Hawking, American Institute of Physics, Woodbury, NY, U.S.A. (1995) [INSPIRE].
  4. [4]
    P. Gao, D.L. Jafferis and A. Wall, Traversable wormholes via a double trace deformation, JHEP 12 (2017) 151 [arXiv:1608.05687] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    J. Maldacena and X.-L. Qi, Eternal traversable wormhole, arXiv:1804.00491 [INSPIRE].
  6. [6]
    E. Caceres, A.S. Misobuchi and M.-L. Xiao, Rotating traversable wormholes in AdS, JHEP 12 (2018) 005 [arXiv:1807.07239] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    Z. Fu, B. Grado-White and D. Marolf, A perturbative perspective on self-supporting wormholes, arXiv:1807.07917 [INSPIRE].
  8. [8]
    J. Maldacena, A. Milekhin and F. Popov, Traversable wormholes in four dimensions, arXiv:1807.04726 [INSPIRE].
  9. [9]
    S. Dubovsky, T. Gregoire, A. Nicolis and R. Rattazzi, Null energy condition and superluminal propagation, JHEP 03 (2006) 025 [hep-th/0512260] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    V.A. Rubakov, The null energy condition and its violation, Phys. Usp. 57 (2014) 128 [Usp. Fiz. Nauk 184 (2014) 137] [arXiv:1401.4024] [INSPIRE].
  11. [11]
    C. Armendariz-Picon, On a class of stable, traversable Lorentzian wormholes in classical general relativity, Phys. Rev. D 65 (2002) 104010 [gr-qc/0201027] [INSPIRE].
  12. [12]
    K.A. Bronnikov and S. Grinyok, Instability of wormholes with a nonminimally coupled scalar field, Grav. Cosmol. 7 (2001) 297 [gr-qc/0201083] [INSPIRE].
  13. [13]
    K.A. Bronnikov and S. Grinyok, Charged wormholes with nonminimally coupled scalar fields, existence and stability, gr-qc/0205131 [INSPIRE].
  14. [14]
    K.A. Bronnikov and A.A. Starobinsky, No realistic wormholes from ghost-free scalar-tensor phantom dark energy, JETP Lett. 85 (2007) 1 [Pisma Zh. Eksp. Teor. Fiz. 85 (2007) 3] [gr-qc/0612032] [INSPIRE].
  15. [15]
    J.A. Gonzalez, F.S. Guzman and O. Sarbach, Instability of wormholes supported by a ghost scalar field. I. Linear stability analysis, Class. Quant. Grav. 26 (2009) 015010 [arXiv:0806.0608] [INSPIRE].
  16. [16]
    J.A. Gonzalez, F.S. Guzman and O. Sarbach, Instability of wormholes supported by a ghost scalar field. II. Nonlinear evolution, Class. Quant. Grav. 26 (2009) 015011 [arXiv:0806.1370] [INSPIRE].
  17. [17]
    V.A. Rubakov, Can Galileons support Lorentzian wormholes?, Theor. Math. Phys. 187 (2016) 743 [Teor. Mat. Fiz. 187 (2016) 338] [arXiv:1509.08808] [INSPIRE].
  18. [18]
    V.A. Rubakov, More about wormholes in generalized Galileon theories, Theor. Math. Phys. 188 (2016) 1253 [Teor. Mat. Fiz. 188 (2016) 337] [arXiv:1601.06566] [INSPIRE].
  19. [19]
    O.A. Evseev and O.I. Melichev, No static spherically symmetric wormholes in Horndeski theory, Phys. Rev. D 97 (2018) 124040 [arXiv:1711.04152] [INSPIRE].
  20. [20]
    P. Creminelli, D. Pirtskhalava, L. Santoni and E. Trincherini, Stability of geodesically complete cosmologies, JCAP 11 (2016) 047 [arXiv:1610.04207] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    Y. Cai, Y. Wan, H.-G. Li, T. Qiu and Y.-S. Piao, The effective field theory of nonsingular cosmology, JHEP 01 (2017) 090 [arXiv:1610.03400] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    G. Franciolini, L. Hui, R. Penco, L. Santoni and E. Trincherini, Effective field theory of black hole quasinormal modes in scalar-tensor theories, arXiv:1810.07706 [INSPIRE].
  23. [23]
    M. Libanov, S. Mironov and V. Rubakov, Generalized Galileons: instabilities of bouncing and genesis cosmologies and modified genesis, JCAP 08 (2016) 037 [arXiv:1605.05992] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    T. Kobayashi, Generic instabilities of nonsingular cosmologies in Horndeski theory: a no-go theorem, Phys. Rev. D 94 (2016) 043511 [arXiv:1606.05831] [INSPIRE].
  25. [25]
    S. Mironov, V. Rubakov and V. Volkova, Towards wormhole beyond Horndeski, EPJ Web Conf. 191 (2018) 07014 [arXiv:1811.05832] [INSPIRE].
  26. [26]
    S. Mironov, V. Rubakov and V. Volkova, More about stable wormholes in beyond Horndeski theory, arXiv:1812.07022 [INSPIRE].
  27. [27]
    J. Gleyzes, D. Langlois, F. Piazza and F. Vernizzi, Healthy theories beyond Horndeski, Phys. Rev. Lett. 114 (2015) 211101 [arXiv:1404.6495] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    M. Zumalacárregui and J. García-Bellido, Transforming gravity: from derivative couplings to matter to second-order scalar-tensor theories beyond the Horndeski Lagrangian, Phys. Rev. D 89 (2014) 064046 [arXiv:1308.4685] [INSPIRE].
  29. [29]
    D. Pirtskhalava, L. Santoni, E. Trincherini and F. Vernizzi, Weakly broken Galileon symmetry, JCAP 09 (2015) 007 [arXiv:1505.00007] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    L. Santoni, E. Trincherini and L.G. Trombetta, Behind Horndeski: structurally robust higher derivative EFTs, JHEP 08 (2018) 118 [arXiv:1806.10073] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    A. Nicolis, R. Rattazzi and E. Trincherini, The Galileon as a local modification of gravity, Phys. Rev. D 79 (2009) 064036 [arXiv:0811.2197] [INSPIRE].
  32. [32]
    G.W. Horndeski, Second-order scalar-tensor field equations in a four-dimensional space, Int. J. Theor. Phys. 10 (1974) 363 [INSPIRE].MathSciNetCrossRefGoogle Scholar
  33. [33]
    C. Deffayet, X. Gao, D.A. Steer and G. Zahariade, From k-essence to generalised Galileons, Phys. Rev. D 84 (2011) 064039 [arXiv:1103.3260] [INSPIRE].
  34. [34]
    T. Regge and J.A. Wheeler, Stability of a Schwarzschild singularity, Phys. Rev. 108 (1957) 1063 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    T. Kobayashi, H. Motohashi and T. Suyama, Black hole perturbation in the most general scalar-tensor theory with second-order field equations I: the odd-parity sector, Phys. Rev. D 85 (2012) 084025 [Erratum ibid. D 96 (2017) 109903] [arXiv:1202.4893] [INSPIRE].
  36. [36]
    T. Kobayashi, H. Motohashi and T. Suyama, Black hole perturbation in the most general scalar-tensor theory with second-order field equations II: the even-parity sector, Phys. Rev. D 89 (2014) 084042 [arXiv:1402.6740] [INSPIRE].
  37. [37]
    J.D. Bekenstein, The relation between physical and gravitational geometry, Phys. Rev. D 48 (1993) 3641 [gr-qc/9211017] [INSPIRE].
  38. [38]
    J. Gleyzes, D. Langlois and F. Vernizzi, A unifying description of dark energy, Int. J. Mod. Phys. D 23 (2015) 1443010 [arXiv:1411.3712] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of Theoretical Physics and Center for Astroparticle Physics (CAP)Geneva 4Switzerland
  2. 2.Department of Physics, Center for Theoretical PhysicsColumbia UniversityNew YorkU.S.A.
  3. 3.Department of PhysicsCarnegie Mellon UniversityPittsburghU.S.A.
  4. 4.Scuola Normale SuperiorePisaItaly
  5. 5.INFN — Sezione di PisaPisaItaly

Personalised recommendations