Advertisement

Journal of High Energy Physics

, 2019:213 | Cite as

Ambitwistor string vertex operators on curved backgrounds

  • Tim Adamo
  • Eduardo CasaliEmail author
  • Stefan Nekovar
Open Access
Regular Article - Theoretical Physics
  • 8 Downloads

Abstract

We present vertex operators for ambitwistor strings around generic Yang-Mills, gravity and NS-NS backgrounds. The requirement that vertex operators lie in the BRST cohomology of the worldsheet theory enforces the appropriate linear equations of motion (as well as gauge fixing conditions) for the respective perturbations in these backgrounds. Due to the nature of ambitwistor strings, no approximation is taken and all calculations around the backgrounds are exact.

Keywords

Conformal Field Models in String Theory Superstrings and Heterotic Strings Supergravity Models Scattering Amplitudes 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    L. Mason and D. Skinner, Ambitwistor strings and the scattering equations, JHEP 07 (2014) 048 [arXiv:1311.2564] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    N. Berkovits, Infinite tension limit of the pure spinor superstring, JHEP 03 (2014) 017 [arXiv:1311.4156] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    T. Adamo, E. Casali and D. Skinner, A worldsheet theory for supergravity, JHEP 02 (2015) 116 [arXiv:1409.5656] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    T. Adamo, E. Casali and S. Nekovar, Yang-Mills theory from the worldsheet, Phys. Rev. D 98 (2018) 086022 [arXiv:1807.09171] [INSPIRE].
  5. [5]
    E.S. Fradkin and A.A. Tseytlin, Quantum string theory effective action, Nucl. Phys. B 261 (1985) 1 [Erratum ibid. B 269 (1986) 745] [INSPIRE].
  6. [6]
    C.G. Callan Jr., E.J. Martinec, M.J. Perry and D. Friedan, Strings in background fields, Nucl. Phys. B 262 (1985) 593 [INSPIRE].
  7. [7]
    A. Abouelsaood, C.G. Callan Jr., C.R. Nappi and S.A. Yost, Open strings in background gauge fields, Nucl. Phys. B 280 (1987) 599 [INSPIRE].
  8. [8]
    T. Adamo, E. Casali, L. Mason and S. Nekovar, Amplitudes on plane waves from ambitwistor strings, JHEP 11 (2017) 160 [arXiv:1708.09249] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    T. Adamo, E. Casali, L. Mason and S. Nekovar, Scattering on plane waves and the double copy, Class. Quant. Grav. 35 (2018) 015004 [arXiv:1706.08925] [INSPIRE].
  10. [10]
    O. Chandía and B.C. Vallilo, Ambitwistor pure spinor string in a type-II supergravity background, JHEP 06 (2015) 206 [arXiv:1505.05122] [INSPIRE].
  11. [11]
    O. Chandía and B.C. Vallilo, On-shell type-II supergravity from the ambitwistor pure spinor string, Class. Quant. Grav. 33 (2016) 185003 [arXiv:1511.03329] [INSPIRE].
  12. [12]
    T. Azevedo and R.L. Jusinskas, Background constraints in the infinite tension limit of the heterotic string, JHEP 08 (2016) 133 [arXiv:1607.06805] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    O. Chandía and B.C. Vallilo, Ambitwistor superstring in the Green-Schwarz formulation, Eur. Phys. J. C 77 (2017) 473 [arXiv:1612.01806] [INSPIRE].
  14. [14]
    N. Berkovits and E. Witten, Conformal supergravity in twistor-string theory, JHEP 08 (2004) 009 [hep-th/0406051] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    D. Friedan, E.J. Martinec and S.H. Shenker, Conformal invariance, supersymmetry and string theory, Nucl. Phys. B 271 (1986) 93 [INSPIRE].
  16. [16]
    E.P. Verlinde and H.L. Verlinde, Multiloop calculations in covariant superstring theory, Phys. Lett. B 192 (1987) 95 [INSPIRE].
  17. [17]
    E. Witten, Superstring perturbation theory revisited, arXiv:1209.5461 [INSPIRE].
  18. [18]
    T. Adamo, E. Casali and D. Skinner, Ambitwistor strings and the scattering equations at one loop, JHEP 04 (2014) 104 [arXiv:1312.3828] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    K. Ohmori, Worldsheet geometries of ambitwistor string, JHEP 06 (2015) 075 [arXiv:1504.02675] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    H. Kataoka and H. Sato, Dilaton incoming vertices of the closed superstring and the heterotic string, Phys. Lett. B 245 (1990) 31 [INSPIRE].
  21. [21]
    N. Berkovits and M. Lize, Field theory actions for ambitwistor string and superstring, JHEP 09 (2018) 097 [arXiv:1807.07661] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    T. Azevedo and R.L. Jusinskas, Connecting the ambitwistor and the sectorized heterotic strings, JHEP 10 (2017) 216 [arXiv:1707.08840] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    R.L. Jusinskas, Notes on the ambitwistor pure spinor string, JHEP 05 (2016) 116 [arXiv:1604.02915] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    E. Casali and P. Tourkine, On the null origin of the ambitwistor string, JHEP 11 (2016) 036 [arXiv:1606.05636] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Theoretical Physics Group, Blackett LaboratoryImperial College LondonLondonU.K.
  2. 2.Center for Quantum Mathematics and Physics (QMAP) and Department of PhysicsUniversity of CaliforniaDavisU.S.A.
  3. 3.The Mathematical InstituteUniversity of OxfordOxfordU.K.

Personalised recommendations