Advertisement

Journal of High Energy Physics

, 2019:211 | Cite as

Towards a new approximation for pair-production and associated-production of the Higgs boson

  • Xiaofeng Xu
  • Li Lin YangEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

We propose that loop integrals with internal heavy particles can be evaluated by expanding in the limit of small external masses. This provides a systematically improvable approximation to the integrals in the entire phase space, and works particularly well for the high energy tails of kinematic distributions (where the usual 1/M expansions cease to be valid). We demonstrate our method using Higgs boson pair production as an example. We find that at both one-loop and two-loop, our method provides good approximations to the integrals appearing in the scattering amplitudes. Comparing to existing expansion methods, our method are not restricted to a special phase space region. Combining our efficient method to compute the two-loop amplitude with an infrared subtraction method for the real emission corrections, we expect to have a fast and reliable tool to calculate the differential cross sections for Higgs boson pair production. This will be useful for phenomenological studies and for the extraction of the Higgs self-coupling from future experimental data. Our method can also be applied to other processes, such as the associated production of the Higgs boson with a jet or a Z boson.

Keywords

Higgs Physics Perturbative QCD 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    T. Plehn, M. Spira and P.M. Zerwas, Pair production of neutral Higgs particles in gluon-gluon collisions, Nucl. Phys. B 479 (1996) 46 [Erratum ibid. B 531 (1998) 655] [hep-ph/9603205] [INSPIRE].
  2. [2]
    E.W.N. Glover and J.J. van der Bij, Higgs boson pair production via gluon fusion, Nucl. Phys. B 309 (1988) 282 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    LHC Higgs Cross Section Working Group collaboration, Handbook of LHC Higgs Cross Sections: 4. Deciphering the nature of the Higgs sector, arXiv:1610.07922 [INSPIRE].
  4. [4]
    F. Goertz, A. Papaefstathiou, L.L. Yang and J. Zurita, Higgs boson pair production in the D = 6 extension of the SM, JHEP 04 (2015) 167 [arXiv:1410.3471] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    A. Azatov, R. Contino, G. Panico and M. Son, Effective field theory analysis of double Higgs boson production via gluon fusion, Phys. Rev. D 92 (2015) 035001 [arXiv:1502.00539] [INSPIRE].ADSGoogle Scholar
  6. [6]
    ATLAS collaboration, Measurements of fiducial and differential cross sections for Higgs boson production in the diphoton decay channel at \( \sqrt{s}=8 \) TeV with ATLAS, JHEP 09 (2014) 112 [arXiv:1407.4222] [INSPIRE].
  7. [7]
    ATLAS collaboration, Combined measurement of differential and total cross sections in the Hγγ and the HZZ * → 4ℓ decay channels at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Lett. B 786 (2018) 114 [arXiv:1805.10197] [INSPIRE].
  8. [8]
    CMS collaboration, Measurement of differential cross sections for Higgs boson production in the diphoton decay channel in pp collisions at \( \sqrt{s}=8 \) TeV, Eur. Phys. J. C 76 (2016) 13 [arXiv:1508.07819] [INSPIRE].
  9. [9]
    CMS collaboration, Combined measurement and interpretation of differential Higgs boson production cross sections at \( \sqrt{s}=13 \) TeV, CMS-PAS-HIG-17-028 (2017).
  10. [10]
    R.K. Ellis, I. Hinchliffe, M. Soldate and J.J. van der Bij, Higgs decay to τ + τ : a possible signature of intermediate mass Higgs bosons at the SSC, Nucl. Phys. B 297 (1988) 221 [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    U. Baur and E.W.N. Glover, Higgs boson production at large transverse momentum in hadronic collisions, Nucl. Phys. B 339 (1990) 38 [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    S. Borowka et al., Full top quark mass dependence in Higgs boson pair production at NLO, JHEP 10 (2016) 107 [arXiv:1608.04798] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    S. Borowka et al., Higgs boson pair production in gluon fusion at next-to-leading order with full top-quark mass dependence, Phys. Rev. Lett. 117 (2016) 012001 [Erratum ibid. 117 (2016) 079901] [arXiv:1604.06447] [INSPIRE].
  14. [14]
    S.P. Jones, M. Kerner and G. Luisoni, Next-to-leading-order QCD corrections to Higgs boson plus jet production with full top-quark mass dependence, Phys. Rev. Lett. 120 (2018) 162001 [arXiv:1802.00349] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    C. Anastasiou et al., Higgs boson gluon-fusion production in QCD at three loops, Phys. Rev. Lett. 114 (2015) 212001 [arXiv:1503.06056] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    R. Boughezal et al., Higgs boson production in association with a jet at next-to-next-to-leading order in perturbative QCD, JHEP 06 (2013) 072 [arXiv:1302.6216] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    X. Chen, T. Gehrmann, E.W.N. Glover and M. Jaquier, Precise QCD predictions for the production of Higgs + jet final states, Phys. Lett. B 740 (2015) 147 [arXiv:1408.5325] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    R. Boughezal et al., Higgs boson production in association with a jet at next-to-next-to-leading order, Phys. Rev. Lett. 115 (2015) 082003 [arXiv:1504.07922] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    R. Boughezal et al., Higgs boson production in association with a jet at NNLO using jettiness subtraction, Phys. Lett. B 748 (2015) 5 [arXiv:1505.03893] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    F. Caola, K. Melnikov and M. Schulze, Fiducial cross sections for Higgs boson production in association with a jet at next-to-next-to-leading order in QCD, Phys. Rev. D 92 (2015) 074032 [arXiv:1508.02684] [INSPIRE].ADSGoogle Scholar
  21. [21]
    X. Chen et al., NNLO QCD corrections to Higgs boson production at large transverse momentum, JHEP 10 (2016) 066 [arXiv:1607.08817] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    D. de Florian and J. Mazzitelli, Two-loop virtual corrections to Higgs pair production, Phys. Lett. B 724 (2013) 306 [arXiv:1305.5206] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  23. [23]
    D. de Florian and J. Mazzitelli, Higgs boson pair production at next-to-next-to-leading order in QCD, Phys. Rev. Lett. 111 (2013) 201801 [arXiv:1309.6594] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    D. de Florian et al., Differential Higgs boson pair production at next-to-next-to-leading order in QCD, JHEP 09 (2016) 151 [arXiv:1606.09519] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    P.A. Baikov et al., Quark and gluon form factors to three loops, Phys. Rev. Lett. 102 (2009) 212002 [arXiv:0902.3519] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    T. Gehrmann et al., Calculation of the quark and gluon form factors to three loops in QCD, JHEP 06 (2010) 094 [arXiv:1004.3653] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  27. [27]
    P. Banerjee et al., Two-loop massless QCD corrections to the g + gH + H four-point amplitude, JHEP 11 (2018) 130 [arXiv:1809.05388] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    M. Spira, A. Djouadi, D. Graudenz and P.M. Zerwas, Higgs boson production at the LHC, Nucl. Phys. B 453 (1995) 17 [hep-ph/9504378] [INSPIRE].
  29. [29]
    T. Neumann and C. Williams, The Higgs boson at high p T, Phys. Rev. D 95 (2017) 014004 [arXiv:1609.00367] [INSPIRE].ADSGoogle Scholar
  30. [30]
    T. Neumann, NLO Higgs+jet at large transverse momenta including top quark mass effects, J. Phys. Comm. 2 (2018) 095017 [arXiv:1802.02981] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    J. Grigo, J. Hoff, K. Melnikov and M. Steinhauser, On the Higgs boson pair production at the LHC, Nucl. Phys. B 875 (2013) 1 [arXiv:1305.7340] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    J. Grigo, J. Hoff and M. Steinhauser, Higgs boson pair production: top quark mass effects at NLO and NNLO, Nucl. Phys. B 900 (2015) 412 [arXiv:1508.00909] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    G. Degrassi, P.P. Giardino and R. Gröber, On the two-loop virtual QCD corrections to Higgs boson pair production in the Standard Model, Eur. Phys. J. C 76 (2016) 411 [arXiv:1603.00385] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    R. Gröber, A. Maier and T. Rauh, Reconstruction of top-quark mass effects in Higgs pair production and other gluon-fusion processes, JHEP 03 (2018) 020 [arXiv:1709.07799] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    K. Kudashkin, K. Melnikov and C. Wever, Two-loop amplitudes for processes ggHg, qgHq and \( q\overline{q}\to Hg \) at large Higgs transverse momentum, JHEP 02 (2018) 135 [arXiv:1712.06549] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    J.M. Lindert, K. Kudashkin, K. Melnikov and C. Wever, Higgs bosons with large transverse momentum at the LHC, Phys. Lett. B 782 (2018) 210 [arXiv:1801.08226] [INSPIRE].ADSGoogle Scholar
  37. [37]
    J. Davies, G. Mishima, M. Steinhauser and D. Wellmann, Double-Higgs boson production in the high-energy limit: planar master integrals, JHEP 03 (2018) 048 [arXiv:1801.09696] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    R. Bonciani, G. Degrassi, P.P. Giardino and R. Gröber, Analytical method for next-to-leading-order QCD corrections to double-Higgs production, Phys. Rev. Lett. 121 (2018) 162003 [arXiv:1806.11564] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    M. Becchetti and R. Bonciani, Two-loop master integrals for the planar QCD massive corrections to di-photon and di-jet hadro-production, JHEP 01 (2018) 048 [arXiv:1712.02537] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    K.G. Chetyrkin and F.V. Tkachov, Integration by parts: the algorithm to calculate β-functions in 4 loops, Nucl. Phys. B 192 (1981) 159 [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    A.V. Kotikov, Differential equations method: new technique for massive Feynman diagrams calculation, Phys. Lett. B 254 (1991) 158 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  42. [42]
    A.V. Kotikov, Differential equation method: the calculation of N point Feynman diagrams, Phys. Lett. B 267 (1991) 123 [Erratum ibid. B 295 (1992) 409] [INSPIRE].
  43. [43]
    J.M. Henn, Multiloop integrals in dimensional regularization made simple, Phys. Rev. Lett. 110 (2013) 251601 [arXiv:1304.1806] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    K.-T. Chen, Iterated path integrals, Bull. Am. Math. Soc. 83 (1977) 831 [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    R. Bonciani et al., Two-loop planar master integrals for Higgs → 3 partons with full heavy-quark mass dependence, JHEP 12 (2016) 096 [arXiv:1609.06685] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    A. Hasselhuhn, T. Luthe and M. Steinhauser, On top quark mass effects to ggZH at NLO, JHEP 01 (2017) 073 [arXiv:1611.05881] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  47. [47]
    J.M. Campbell, R.K. Ellis, M. Czakon and S. Kirchner, Two loop correction to interference in ggZZ, JHEP 08 (2016) 011 [arXiv:1605.01380] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    Y. Gong, Z. Li, X. Xu, L.L. Yang and X. Zhao, Mixed QCD-EW corrections for Higgs boson production at e + e colliders, Phys. Rev. D 95 (2017) 093003 [arXiv:1609.03955] [INSPIRE].ADSGoogle Scholar
  49. [49]
    Q.-F. Sun, F. Feng, Y. Jia and W.-L. Sang, Mixed electroweak-QCD corrections to e + e HZ at Higgs factories, Phys. Rev. D 96 (2017) 051301 [arXiv:1609.03995] [INSPIRE].ADSGoogle Scholar
  50. [50]
    A.V. Smirnov, Algorithm FIRE — Feynman Integral REduction, JHEP 10 (2008) 107 [arXiv:0807.3243] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  51. [51]
    A.V. Smirnov, FIRE5: a C++ implementation of Feynman Integral REduction, Comput. Phys. Commun. 189 (2015) 182 [arXiv:1408.2372] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  52. [52]
    A.V. Smirnov and V.A. Smirnov, FIRE4, LiteRed and accompanying tools to solve integration by parts relations, Comput. Phys. Commun. 184 (2013) 2820 [arXiv:1302.5885] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  53. [53]
    R.N. Lee, Presenting LiteRed: a tool for the Loop InTEgrals REDuction, arXiv:1212.2685 [INSPIRE].
  54. [54]
    S. Caron-Huot and J.M. Henn, Iterative structure of finite loop integrals, JHEP 06 (2014) 114 [arXiv:1404.2922] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  55. [55]
    M. Argeri et al., Magnus and Dyson series for master integrals, JHEP 03 (2014) 082 [arXiv:1401.2979] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  56. [56]
    R.N. Lee, Reducing differential equations for multiloop master integrals, JHEP 04 (2015) 108 [arXiv:1411.0911] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  57. [57]
    J.M. Henn, Lectures on differential equations for Feynman integrals, J. Phys. A 48 (2015) 153001 [arXiv:1412.2296] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  58. [58]
    C. Meyer, Transforming differential equations of multi-loop Feynman integrals into canonical form, JHEP 04 (2017) 006 [arXiv:1611.01087] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  59. [59]
    C. Duhr, H. Gangl and J.R. Rhodes, From polygons and symbols to polylogarithmic functions, JHEP 10 (2012) 075 [arXiv:1110.0458] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  60. [60]
    F.C.S. Brown, Multiple zeta values and periods of moduli spaces M 0,n, Annales Sci. Ecole Norm. Sup. 42 (2009) 371 [math.AG/0606419].
  61. [61]
    A.B. Goncharov, Multiple polylogarithms, cyclotomy and modular complexes, Math. Res. Lett. 5 (1998) 497 [arXiv:1105.2076] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  62. [62]
    A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Classical polylogarithms for amplitudes and Wilson loops, Phys. Rev. Lett. 105 (2010) 151605 [arXiv:1006.5703] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  63. [63]
    T. Hahn and M. Pérez-Victoria, Automatized one loop calculations in four-dimensions and D-dimensions, Comput. Phys. Commun. 118 (1999) 153 [hep-ph/9807565] [INSPIRE].
  64. [64]
    A. von Manteuffel and L. Tancredi, A non-planar two-loop three-point function beyond multiple polylogarithms, JHEP 06 (2017) 127 [arXiv:1701.05905] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  65. [65]
    L. Adams, E. Chaubey and S. Weinzierl, Simplifying differential equations for multiscale feynman integrals beyond multiple polylogarithms, Phys. Rev. Lett. 118 (2017) 141602 [arXiv:1702.04279] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    S. Borowka et al., pySecDec: a toolbox for the numerical evaluation of multi-scale integrals, Comput. Phys. Commun. 222 (2018) 313 [arXiv:1703.09692] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.School of Physics and State Key Laboratory of Nuclear Physics and TechnologyPeking UniversityBeijingChina
  2. 2.Collaborative Innovation Center of Quantum MatterBeijingChina
  3. 3.Center for High Energy PhysicsPeking UniversityBeijingChina

Personalised recommendations