Journal of High Energy Physics

, 2019:207 | Cite as

Klebanov-Strassler black hole

  • Alex BuchelEmail author
Open Access
Regular Article - Theoretical Physics


We construct a black hole solution on warped deformed conifold in type IIB supergravity with fluxes. The black hole has translationary invariant horizon and is a holographic dual to a thermal homogeneous and isotropic state of a cascading SU(K + P ) × SU(K) \( \mathcal{N}=1 \) supersymmetric gauge theory with spontaneously broken chiral symmetry. We discuss thermal properties of the new black hole solutions. We comment on implications of the new black hole solutions for the landscape of KKLT de Sitter vacua in string theory.


Black Holes in String Theory Gauge-gravity correspondence Holography and quark-gluon plasmas Flux compactifications 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    P. Candelas and X.C. de la Ossa, Comments on Conifolds, Nucl. Phys. B 342 (1990) 246 [INSPIRE].
  2. [2]
    J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    I.R. Klebanov and E. Witten, Superconformal field theory on three-branes at a Calabi-Yau singularity, Nucl. Phys. B 536 (1998) 199 [hep-th/9807080] [INSPIRE].
  4. [4]
    I.R. Klebanov and M.J. Strassler, Supergravity and a confining gauge theory: Duality cascades and χSB resolution of naked singularities, JHEP 08 (2000) 052 [hep-th/0007191] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    N. Seiberg, Electric-magnetic duality in supersymmetric nonAbelian gauge theories, Nucl. Phys. B 435 (1995) 129 [hep-th/9411149] [INSPIRE].
  6. [6]
    S.B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string compactifications, Phys. Rev. D 66 (2002) 106006 [hep-th/0105097] [INSPIRE].
  7. [7]
    S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, de Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [INSPIRE].
  8. [8]
    E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    A. Buchel, Finite temperature resolution of the Klebanov-Tseytlin singularity, Nucl. Phys. B 600 (2001) 219 [hep-th/0011146] [INSPIRE].
  10. [10]
    I.R. Klebanov and A.A. Tseytlin, Gravity duals of supersymmetric SU(N ) × SU(N + M ) gauge theories, Nucl. Phys. B 578 (2000) 123 [hep-th/0002159] [INSPIRE].
  11. [11]
    A. Buchel, C.P. Herzog, I.R. Klebanov, L.A. Pando Zayas and A.A. Tseytlin, Nonextremal gravity duals for fractional D-3 branes on the conifold, JHEP 04 (2001) 033 [hep-th/0102105] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    S.S. Gubser, C.P. Herzog, I.R. Klebanov and A.A. Tseytlin, Restoration of chiral symmetry: A supergravity perspective, JHEP 05 (2001) 028 [hep-th/0102172] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    O. Aharony, A. Buchel and P. Kerner, The black hole in the throat: Thermodynamics of strongly coupled cascading gauge theories, Phys. Rev. D 76 (2007) 086005 [arXiv:0706.1768] [INSPIRE].
  14. [14]
    O. Aharony, A. Buchel and A. Yarom, Holographic renormalization of cascading gauge theories, Phys. Rev. D 72 (2005) 066003 [hep-th/0506002] [INSPIRE].
  15. [15]
    A. Buchel, Hydrodynamics of the cascading plasma, Nucl. Phys. B 820 (2009) 385 [arXiv:0903.3605] [INSPIRE].
  16. [16]
    A. Buchel, Chiral symmetry breaking in cascading gauge theory plasma, Nucl. Phys. B 847 (2011) 297 [arXiv:1012.2404] [INSPIRE].
  17. [17]
    I. Bena, M. Graña and N. Halmagyi, On the Existence of Meta-stable Vacua in Klebanov-Strassler, JHEP 09 (2010) 087 [arXiv:0912.3519] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    I. Bena, G. Giecold, M. Graña, N. Halmagyi and S. Massai, On Metastable Vacua and the Warped Deformed Conifold: Analytic Results, Class. Quant. Grav. 30 (2013) 015003 [arXiv:1102.2403] [INSPIRE].
  19. [19]
    I. Bena, G. Giecold, M. Graña, N. Halmagyi and S. Massai, The backreaction of anti-D3 branes on the Klebanov-Strassler geometry, JHEP 06 (2013) 060 [arXiv:1106.6165] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    I. Bena, M. Graña, S. Kuperstein and S. Massai, Anti-D3 Branes: Singular to the bitter end, Phys. Rev. D 87 (2013) 106010 [arXiv:1206.6369] [INSPIRE].
  21. [21]
    I. Bena, A. Buchel and O.J.C. Dias, Horizons cannot save the Landscape, Phys. Rev. D 87 (2013) 063012 [arXiv:1212.5162] [INSPIRE].
  22. [22]
    S.S. Gubser, Curvature singularities: The good, the bad and the naked, Adv. Theor. Math. Phys. 4 (2000) 679 [hep-th/0002160] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    A. Dymarsky, I.R. Klebanov and N. Seiberg, On the moduli space of the cascading SU(M + p) × SU(P) gauge theory, JHEP 01 (2006) 155 [hep-th/0511254] [INSPIRE].
  24. [24]
    A. Buchel, A holographic perspective on Gubser-Mitra conjecture, Nucl. Phys. B 731 (2005) 109 [hep-th/0507275] [INSPIRE].
  25. [25]
    M. Mia, F. Chen, K. Dasgupta, P. Franche and S. Vaidya, Non-Extremality, Chemical Potential and the Infrared limit of Large N Thermal QCD, Phys. Rev. D 86 (2012) 086002 [arXiv:1202.5321] [INSPIRE].
  26. [26]
    A. Buchel and C. Pagnutti, Exotic Hairy Black Holes, Nucl. Phys. B 824 (2010) 85 [arXiv:0904.1716] [INSPIRE].
  27. [27]
    P. Bosch, A. Buchel and L. Lehner, Unstable horizons and singularity development in holography, JHEP 07 (2017) 135 [arXiv:1704.05454] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    A. Buchel, Singularity development and supersymmetry in holography, JHEP 08 (2017) 134 [arXiv:1705.08560] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2019

Authors and Affiliations

  1. 1.Department of Applied Mathematics, Department of Physics and AstronomyUniversity of Western OntarioLondonCanada
  2. 2.Perimeter Institute for Theoretical PhysicsWaterlooCanada

Personalised recommendations