Advertisement

Journal of High Energy Physics

, 2019:206 | Cite as

Tritium beta decay with additional emission of new light bosons

  • Giorgio Arcadi
  • Julian Heeck
  • Florian Heizmann
  • Susanne Mertens
  • Farinaldo S. Queiroz
  • Werner RodejohannEmail author
  • Martin Slezák
  • Kathrin Valerius
Open Access
Regular Article - Experimental Physics
  • 10 Downloads

Abstract

We consider tritium beta decay with additional emission of light pseudoscalar or vector bosons coupling to electrons or neutrinos. The electron energy spectrum for all cases is evaluated and shown to be well estimated by approximated analytical expressions. We give the statistical sensitivity of Katrin to the mass and coupling of the new bosons, both in the standard setup of the experiment as well as for future modifications in which the full energy spectrum of tritium decay is accessible.

Keywords

Beyond Standard Model Neutrino Detectors and Telescopes (experiments) Rare decay 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    G. Drexlin, V. Hannen, S. Mertens and C. Weinheimer, Current direct neutrino mass experiments, Adv. High Energy Phys. 2013 (2013) 293986 [arXiv:1307.0101] [INSPIRE].CrossRefGoogle Scholar
  2. [2]
    KATRIN collaboration, KATRIN: A Next generation tritium beta decay experiment with sub-eV sensitivity for the electron neutrino mass. Letter of intent, hep-ex/0109033 [INSPIRE].
  3. [3]
    KATRIN collaboration, KATRIN design report 2004, FZKA-7090 [https://publikationen.bibliothek.kit.edu/270060419/3814644] [INSPIRE].
  4. [4]
    A.S. Riis and S. Hannestad, Detecting sterile neutrinos with KATRIN like experiments, JCAP 02 (2011) 011 [arXiv:1008.1495] [INSPIRE].CrossRefGoogle Scholar
  5. [5]
    J.A. Formaggio and J. Barrett, Resolving the Reactor Neutrino Anomaly with the KATRIN Neutrino Experiment, Phys. Lett. B 706 (2011) 68 [arXiv:1105.1326] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    A. Sejersen Riis, S. Hannestad and C. Weinheimer, Analysis of simulated data for the KArlsruhe TRItium Neutrino experiment using Bayesian inference, Phys. Rev. C 84 (2011) 045503 [arXiv:1105.6005] [INSPIRE].ADSGoogle Scholar
  7. [7]
    A. Esmaili and O.L.G. Peres, KATRIN Sensitivity to Sterile Neutrino Mass in the Shadow of Lightest Neutrino Mass, Phys. Rev. D 85 (2012) 117301 [arXiv:1203.2632] [INSPIRE].ADSGoogle Scholar
  8. [8]
    J.S. Díaz, Tests of Lorentz symmetry in single beta decay, Adv. High Energy Phys. 2014 (2014) 305298 [arXiv:1408.5880] [INSPIRE].Google Scholar
  9. [9]
    W. Rodejohann and H. Zhang, Signatures of Extra Dimensional Sterile Neutrinos, Phys. Lett. B 737 (2014) 81 [arXiv:1407.2739] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    N.M.N. Steinbrink et al., Statistical sensitivity on right-handed currents in presence of eV scale sterile neutrinos with KATRIN, JCAP 06 (2017) 015 [arXiv:1703.07667] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    S. Mertens et al., Sensitivity of Next-Generation Tritium Beta-Decay Experiments for keV-Scale Sterile Neutrinos, JCAP 02 (2015) 020 [arXiv:1409.0920] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    KATRIN collaboration, A novel detector system for KATRIN to search for keV-scale sterile neutrinos, arXiv:1810.06711 [INSPIRE].
  13. [13]
    M. Drewes et al., A White Paper on keV Sterile Neutrino Dark Matter, JCAP 01 (2017) 025 [arXiv:1602.04816] [INSPIRE].Google Scholar
  14. [14]
    R.E. Shrock, New Tests For and Bounds On, Neutrino Masses and Lepton Mixing, Phys. Lett. B 96 (1980) 159 [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    P. Herczeg, Beta decay beyond the standard model, Prog. Part. Nucl. Phys. 46 (2001) 413 [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    N. Severijns, M. Beck and O. Naviliat-Cuncic, Tests of the standard electroweak model in beta decay, Rev. Mod. Phys. 78 (2006) 991 [nucl-ex/0605029] [INSPIRE].
  17. [17]
    W. Liao, keV scale ν R dark matter and its detection in β decay experiment, Phys. Rev. D 82 (2010) 073001 [arXiv:1005.3351] [INSPIRE].
  18. [18]
    H.J. de Vega, O. Moreno, E.M. de Guerra, M.R. Medrano and N.G. Sanchez, Role of sterile neutrino warm dark matter in rhenium and tritium beta decays, Nucl. Phys. B 866 (2013) 177 [arXiv:1109.3452] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  19. [19]
    D.N. Abdurashitov, A.I. Berlev, N.A. Likhovid, A.V. Lokhov, I.I. Tkachev and V.E. Yants, Searches for a Sterile-Neutrino Admixture in Detecting Tritium Decays in a Proportional Counter: New Possibilities, Phys. Atom. Nucl. 78 (2015) 268 [arXiv:1403.2935] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    J. Barry, J. Heeck and W. Rodejohann, Sterile neutrinos and right-handed currents in KATRIN, JHEP 07 (2014) 081 [arXiv:1404.5955] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    M. Gonzalez-Alonso, O. Naviliat-Cuncic and N. Severijns, New physics searches in nuclear and neutron β decay, Prog. Part. Nucl. Phys. 104 (2019) 165 [arXiv:1803.08732] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    A. Abada, Á. Hernández-Cabezudo and X. Marcano, Beta and Neutrinoless Double Beta Decays with KeV Sterile Fermions, JHEP 01 (2019) 041 [arXiv:1807.01331] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    P.O. Ludl and W. Rodejohann, Direct Neutrino Mass Experiments and Exotic Charged Current Interactions, JHEP 06 (2016) 040 [arXiv:1603.08690] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    S.S. Masood, S. Nasri, J. Schechter, M.A. Tortola, J.W.F. Valle and C. Weinheimer, Exact relativistic beta decay endpoint spectrum, Phys. Rev. C 76 (2007) 045501 [arXiv:0706.0897] [INSPIRE].ADSGoogle Scholar
  25. [25]
    Y. Chikashige, R.N. Mohapatra and R.D. Peccei, Are There Real Goldstone Bosons Associated with Broken Lepton Number?, Phys. Lett. B 98 (1981) 265 [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    J. Schechter and J.W.F. Valle, Neutrino Decay and Spontaneous Violation of Lepton Number, Phys. Rev. D 25 (1982) 774 [INSPIRE].ADSGoogle Scholar
  27. [27]
    A. Pilaftsis, Astrophysical and terrestrial constraints on singlet Majoron models, Phys. Rev. D 49 (1994) 2398 [hep-ph/9308258] [INSPIRE].
  28. [28]
    C. Garcia-Cely and J. Heeck, Neutrino Lines from Majoron Dark Matter, JHEP 05 (2017) 102 [arXiv:1701.07209] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    P. Langacker, The Physics of Heavy ZGauge Bosons, Rev. Mod. Phys. 81 (2009) 1199 [arXiv:0801.1345] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    H. Ruegg and M. Ruiz-Altaba, The Stueckelberg field, Int. J. Mod. Phys. A 19 (2004) 3265 [hep-th/0304245] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    J. Alexander et al., Dark Sectors 2016 Workshop: Community Report, FERMILAB-CONF-16-421 (2016) [arXiv:1608.08632].
  32. [32]
    Y. Farzan and J. Heeck, Neutrinophilic nonstandard interactions, Phys. Rev. D 94 (2016) 053010 [arXiv:1607.07616] [INSPIRE].ADSGoogle Scholar
  33. [33]
    P. Bakhti, Y. Farzan and M. Rajaee, Secret interactions of neutrinos with light gauge boson at the DUNE near detector, arXiv:1810.04441 [INSPIRE].
  34. [34]
    J.A. Dror, R. Lasenby and M. Pospelov, New constraints on light vectors coupled to anomalous currents, Phys. Rev. Lett. 119 (2017) 141803 [arXiv:1705.06726] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    J.A. Dror, R. Lasenby and M. Pospelov, Dark forces coupled to nonconserved currents, Phys. Rev. D 96 (2017) 075036 [arXiv:1707.01503] [INSPIRE].ADSGoogle Scholar
  36. [36]
    M. Kleesiek et al., β-Decay Spectrum, Response Function and Statistical Model for Neutrino Mass Measurements with the KATRIN Experiment, arXiv:1806.00369 [INSPIRE].
  37. [37]
    W.W. Repko and C.-E. Wu, Radiative Corrections To The Endpoint Of The Tritium Beta Decay Spectrum, Phys. Rev. C 28 (1983) 2433 [INSPIRE].ADSGoogle Scholar
  38. [38]
    A. Saenz, S. Jonsell and P. Froelich, Improved Molecular Final-State Distribution of HeT + for the β-Decay Process of T 2, Phys. Rev. Lett. 84 (2000) 242 [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    N. Doss, J. Tennyson, A. Saenz and S. Jonsell, Molecular effects in investigations of tritium molecule beta decay endpoint experiments, Phys. Rev. C 73 (2006) 025502 [INSPIRE].ADSGoogle Scholar
  40. [40]
    N. Doss and J. Tennyson, Excitations to the electronic continuum of 3 HeT + in investigations of T 2 β-decay experiments, J. Phys. B 41 (2008) 125701.ADSGoogle Scholar
  41. [41]
    W.A. Rolke, A.M. Lopez and J. Conrad, Limits and confidence intervals in the presence of nuisance parameters, Nucl. Instrum. Meth. A 551 (2005) 493 [physics/0403059] [INSPIRE].
  42. [42]
    F. Harms, Characterization and minimization of background processes in the KATRIN main spectrometer, Ph.D. Thesis, Karlsruhe Institute of Technology (2015).Google Scholar
  43. [43]
    R. Laha, B. Dasgupta and J.F. Beacom, Constraints on New Neutrino Interactions via Light Abelian Vector Bosons, Phys. Rev. D 89 (2014) 093025 [arXiv:1304.3460] [INSPIRE].ADSGoogle Scholar
  44. [44]
    P. Bakhti and Y. Farzan, Constraining secret gauge interactions of neutrinos by meson decays, Phys. Rev. D 95 (2017) 095008 [arXiv:1702.04187] [INSPIRE].ADSGoogle Scholar
  45. [45]
    P.S. Pasquini and O.L.G. Peres, Bounds on Neutrino-Scalar Yukawa Coupling, Phys. Rev. D 93 (2016) 053007 [Erratum ibid. D 93 (2016) 079902] [arXiv:1511.01811] [INSPIRE].
  46. [46]
    A.P. Lessa and O.L.G. Peres, Revising limits on neutrino-Majoron couplings, Phys. Rev. D 75 (2007) 094001 [hep-ph/0701068] [INSPIRE].
  47. [47]
    EXO-200 collaboration, Search for Majoron-emitting modes of double-beta decay of 136 Xe with EXO-200, Phys. Rev. D 90 (2014) 092004 [arXiv:1409.6829] [INSPIRE].
  48. [48]
    Particle Data Group collaboration, Review of Particle Physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].
  49. [49]
    R.H. Parker, C. Yu, W. Zhong, B. Estey and H. Müller, Measurement of the fine-structure constant as a test of the Standard Model, Science 360 (2018) 191 [arXiv:1812.04130] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  50. [50]
    M. Lindner, M. Platscher and F.S. Queiroz, A Call for New Physics: The Muon Anomalous Magnetic Moment and Lepton Flavor Violation, Phys. Rept. 731 (2018) 1 [arXiv:1610.06587] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  51. [51]
    J. Liu, C.E.M. Wagner and X.-P. Wang, A light complex scalar for the electron and muon anomalous magnetic moments, arXiv:1810.11028 [INSPIRE].
  52. [52]
    M. Lindner, F.S. Queiroz, W. Rodejohann and X.-J. Xu, Neutrino-electron scattering: general constraints on Zand dark photon models, JHEP 05 (2018) 098 [arXiv:1803.00060] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    K. Blum, Y. Nir and M. Shavit, Neutrinoless double-beta decay with massive scalar emission, Phys. Lett. B 785 (2018) 354 [arXiv:1802.08019] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    T. Brune and H. Päs, Majoron Dark Matter and Constraints on the Majoron-Neutrino Coupling, arXiv:1808.08158 [INSPIRE].
  55. [55]
    P. Gondolo and G. Raffelt, Solar neutrino limit on axions and keV-mass bosons, Phys. Rev. D 79 (2009) 107301 [arXiv:0807.2926] [INSPIRE].ADSGoogle Scholar
  56. [56]
    J. Redondo, Helioscope Bounds on Hidden Sector Photons, JCAP 07 (2008) 008 [arXiv:0801.1527] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    H. An, M. Pospelov and J. Pradler, New stellar constraints on dark photons, Phys. Lett. B 725 (2013) 190 [arXiv:1302.3884] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  58. [58]
    E.W. Kolb and M.S. Turner, Supernova SN 1987a and the Secret Interactions of Neutrinos, Phys. Rev. D 36 (1987) 2895 [INSPIRE].ADSGoogle Scholar
  59. [59]
    K.C.Y. Ng and J.F. Beacom, Cosmic neutrino cascades from secret neutrino interactions, Phys. Rev. D 90 (2014) 065035 [Erratum ibid. D 90 (2014) 089904] [arXiv:1404.2288] [INSPIRE].
  60. [60]
    K. Ioka and K. Murase, IceCube PeV-EeV neutrinos and secret interactions of neutrinos, PTEP 2014 (2014) 061E01 [arXiv:1404.2279] [INSPIRE].
  61. [61]
    G.B. Gelmini, S. Nussinov and M. Roncadelli, Bounds and Prospects for the Majoron Model of Left-handed Neutrino Masses, Nucl. Phys. B 209 (1982) 157 [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    K. Choi, C.W. Kim, J. Kim and W.P. Lam, Constraints on the Majoron Interactions From the Supernova SN1987A, Phys. Rev. D 37 (1988) 3225 [INSPIRE].ADSGoogle Scholar
  63. [63]
    Z.G. Berezhiani and A.Yu. Smirnov, Matter Induced Neutrino Decay and Supernova SN1987A, Phys. Lett. B 220 (1989) 279 [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    K. Choi and A. Santamaria, Majorons and Supernova Cooling, Phys. Rev. D 42 (1990) 293 [INSPIRE].ADSGoogle Scholar
  65. [65]
    S. Chang and K. Choi, Constraints from nucleosynthesis and SN1987A on majoron emitting double beta decay, Phys. Rev. D 49 (1994) 12 [hep-ph/9303243] [INSPIRE].
  66. [66]
    M. Kachelriess, R. Tomas and J.W.F. Valle, Supernova bounds on Majoron emitting decays of light neutrinos, Phys. Rev. D 62 (2000) 023004 [hep-ph/0001039] [INSPIRE].
  67. [67]
    R. Tomas, H. Pas and J.W.F. Valle, Generalized bounds on Majoron-neutrino couplings, Phys. Rev. D 64 (2001) 095005 [hep-ph/0103017] [INSPIRE].
  68. [68]
    M. Lindner, T. Ohlsson and W. Winter, Decays of supernova neutrinos, Nucl. Phys. B 622 (2002) 429 [astro-ph/0105309] [INSPIRE].
  69. [69]
    S. Hannestad, P. Keranen and F. Sannino, A Supernova constraint on bulk Majorons, Phys. Rev. D 66 (2002) 045002 [hep-ph/0204231] [INSPIRE].
  70. [70]
    Y. Farzan, Bounds on the coupling of the Majoron to light neutrinos from supernova cooling, Phys. Rev. D 67 (2003) 073015 [hep-ph/0211375] [INSPIRE].
  71. [71]
    G.L. Fogli, E. Lisi, A. Mirizzi and D. Montanino, Three generation flavor transitions and decays of supernova relic neutrinos, Phys. Rev. D 70 (2004) 013001 [hep-ph/0401227] [INSPIRE].
  72. [72]
    C.R. Das and J. Pulido, Neutrino nonstandard interactions in the supernova, Phys. Rev. D 84 (2011) 105040 [arXiv:1106.4268] [INSPIRE].ADSGoogle Scholar
  73. [73]
    L. Heurtier and Y. Zhang, Supernova Constraints on Massive (Pseudo)Scalar Coupling to Neutrinos, JCAP 02 (2017) 042 [arXiv:1609.05882] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    Y. Farzan, M. Lindner, W. Rodejohann and X.-J. Xu, Probing neutrino coupling to a light scalar with coherent neutrino scattering, JHEP 05 (2018) 066 [arXiv:1802.05171] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    J.H. Chang, R. Essig and S.D. McDermott, Revisiting Supernova 1987A Constraints on Dark Photons, JHEP 01 (2017) 107 [arXiv:1611.03864] [INSPIRE].ADSzbMATHGoogle Scholar
  76. [76]
    J.H. Chang, R. Essig and S.D. McDermott, Supernova 1987A Constraints on Sub-GeV Dark Sectors, Millicharged Particles, the QCD Axion and an Axion-like Particle, JHEP 09 (2018) 051 [arXiv:1803.00993] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    G. Mangano and P.D. Serpico, A robust upper limit on N eff from BBN, circa 2011, Phys. Lett. B 701 (2011) 296 [arXiv:1103.1261] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    B. Ahlgren, T. Ohlsson and S. Zhou, Comment on “Is Dark Matter with Long-Range Interactions a Solution to All Small-Scale Problems of Λ Cold Dark Matter Cosmology?”, Phys. Rev. Lett. 111 (2013) 199001 [arXiv:1309.0991] [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    G.-y. Huang, T. Ohlsson and S. Zhou, Observational Constraints on Secret Neutrino Interactions from Big Bang Nucleosynthesis, Phys. Rev. D 97 (2018) 075009 [arXiv:1712.04792] [INSPIRE].ADSGoogle Scholar
  80. [80]
    Planck collaboration, Planck 2018 results. VI. Cosmological parameters, arXiv:1807.06209 [INSPIRE].
  81. [81]
    C. Boehm, M.J. Dolan and C. McCabe, Increasing N eff with particles in thermal equilibrium with neutrinos, JCAP 12 (2012) 027 [arXiv:1207.0497] [INSPIRE].Google Scholar
  82. [82]
    S. Hannestad, Structure formation with strongly interacting neutrinos - Implications for the cosmological neutrino mass bound, JCAP 02 (2005) 011 [astro-ph/0411475] [INSPIRE].
  83. [83]
    N.F. Bell, E. Pierpaoli and K. Sigurdson, Cosmological signatures of interacting neutrinos, Phys. Rev. D 73 (2006) 063523 [astro-ph/0511410] [INSPIRE].
  84. [84]
    F.-Y. Cyr-Racine and K. Sigurdson, Limits on Neutrino-Neutrino Scattering in the Early Universe, Phys. Rev. D 90 (2014) 123533 [arXiv:1306.1536] [INSPIRE].ADSGoogle Scholar
  85. [85]
    M. Archidiacono and S. Hannestad, Updated constraints on non-standard neutrino interactions from Planck, JCAP 07 (2014) 046 [arXiv:1311.3873] [INSPIRE].ADSCrossRefGoogle Scholar
  86. [86]
    L. Lancaster, F.-Y. Cyr-Racine, L. Knox and Z. Pan, A tale of two modes: Neutrino free-streaming in the early universe, JCAP 07 (2017) 033 [arXiv:1704.06657] [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    I.M. Oldengott, T. Tram, C. Rampf and Y.Y.Y. Wong, Interacting neutrinos in cosmology: exact description and constraints, JCAP 11 (2017) 027 [arXiv:1706.02123] [INSPIRE].ADSCrossRefGoogle Scholar
  88. [88]
    F. Forastieri, M. Lattanzi and P. Natoli, Constraints on secret neutrino interactions after Planck, JCAP 07 (2015) 014 [arXiv:1504.04999] [INSPIRE].ADSCrossRefGoogle Scholar
  89. [89]
    P. Nyborg, H.S. Song, W. Kernan and R.H. Good, Phase-Space Considerations for Four-Particle Final States, Phys. Rev. 140 (1965) B914 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Max-Planck-Institut für KernphysikHeidelbergGermany
  2. 2.Service de Physique ThéoriqueUniversité Libre de BruxellesBrusselsBelgium
  3. 3.Department of Physics and AstronomyUniversity of CaliforniaIrvineU.S.A.
  4. 4.Institute of Experimental Particle PhysicsKarlsruhe Institute of TechnologyKarlsruheGermany
  5. 5.Max Planck Institute for PhysicsMünchenGermany
  6. 6.Technische Universität MünchenMünchenGermany
  7. 7.International Institute of PhysicsFederal University of Rio Grande do NorteNatalBrazil
  8. 8.Institute for Nuclear PhysicsKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations