Emergent classical spacetime from microstates of an incipient black hole
- 20 Downloads
Abstract
Black holes have an enormous underlying space of microstates, but universal macroscopic physics characterized by mass, charge and angular momentum as well as a causally disconnected interior. This leads to two related puzzles: (1) How does the effective factorization of interior and exterior degrees of freedom emerge in gravity?, and (2) How does the underlying degeneracy of states wind up having a geometric realization in the horizon area and in properties of the singularity? We explore these puzzles in the context of an incipient black hole in the AdS/CFT correspondence, the microstates of which are dual to half-BPS states of the \( \mathcal{N} \) = 4 super-Yang-Mills theory. First, we construct a code subspace for this black hole and show how to organize it as a tensor product of a universal macroscopic piece (describing the exterior), and a factor corresponding to the microscopic degrees of freedom (describing the interior). We then study the classical phase space and symplectic form for low-energy excitations around the black hole. On the AdS side, we find that the symplectic form has a new physical degree of freedom at the stretched horizon of the black hole, reminiscent of soft hair, which is absent in the microstates. We explicitly show how such a soft mode emerges from the microscopic phase space in the dual CFT via a canonical transformation and how it encodes partial information about the microscopic degrees of freedom of the black hole.
Keywords
AdS-CFT Correspondence Black Holes in String Theory Spacetime SingularitiesNotes
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
References
- [1]A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett. B 379 (1996) 99 [hep-th/9601029] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
- [2]J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
- [3]E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
- [4]S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
- [5]V. Balasubramanian, J. de Boer, V. Jejjala and J. Simon, The library of Babel: on the origin of gravitational thermodynamics, JHEP 12 (2005) 006 [hep-th/0508023] [INSPIRE].ADSMathSciNetGoogle Scholar
- [6]R.C. Myers and O. Tafjord, Superstars and giant gravitons, JHEP 11 (2001) 009 [hep-th/0109127] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [7]O. Lunin and S.D. Mathur, AdS/CFT duality and the black hole information paradox, Nucl. Phys. B 623 (2002) 342 [hep-th/0109154] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
- [8]O. Lunin and S.D. Mathur, Statistical interpretation of Bekenstein entropy for systems with a stretched horizon, Phys. Rev. Lett. 88 (2002) 211303 [hep-th/0202072] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
- [9]S.D. Mathur, The fuzzball proposal for black holes: an elementary review, Fortsch. Phys. 53 (2005) 793 [hep-th/0502050] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
- [10]V. Balasubramanian, J. de Boer, V. Jejjala and J. Simon, Entropy of near-extremal black holes in AdS 5, JHEP 05 (2008) 067 [arXiv:0707.3601] [INSPIRE].ADSCrossRefGoogle Scholar
- [11]A. Almheiri, X. Dong and D. Harlow, Bulk locality and quantum error correction in AdS/CFT, JHEP 04 (2015) 163 [arXiv:1411.7041] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
- [12]K. Papadodimas and S. Raju, An Infalling Observer in AdS/CFT, JHEP 10 (2013) 212 [arXiv:1211.6767] [INSPIRE].ADSCrossRefGoogle Scholar
- [13]L. Grant et al., Minisuperspace quantization of ‘bubbling AdS’ and free fermion droplets, JHEP 08 (2005) 025 [hep-th/0505079] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [14]L. Maoz and V.S. Rychkov, Geometry quantization from supergravity: The Case of ‘bubbling AdS’, JHEP 08 (2005) 096 [hep-th/0508059] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [15]P.V. Buividovich and M.I. Polikarpov, Entanglement entropy in gauge theories and the holographic principle for electric strings, Phys. Lett. B 670 (2008) 141 [arXiv:0806.3376] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [16]S. Ghosh, R.M. Soni and S.P. Trivedi, On the entanglement entropy for gauge theories, JHEP 09 (2015) 069 [arXiv:1501.02593] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
- [17]W. Donnelly and A.C. Wall, Geometric entropy and edge modes of the electromagnetic field, Phys. Rev. D 94 (2016) 104053 [arXiv:1506.05792] [INSPIRE].ADSMathSciNetGoogle Scholar
- [18]W. Donnelly and L. Freidel, Local subsystems in gauge theory and gravity, JHEP 09 (2016) 102 [arXiv:1601.04744] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
- [19]J.R. Fliss et al., Interface contributions to topological entanglement in abelian Chern-Simons theory, JHEP 09 (2017) 056 [arXiv:1705.09611] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [20]D. Harlow, The Ryu–Takayanagi formula from quantum error correction, Commun. Math. Phys. 354 (2017) 865 [arXiv:1607.03901] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
- [21]J. Lin, Ryu-Takayanagi area as an entanglement edge term, arXiv:1704.07763 [INSPIRE].
- [22]J. Lin, Entanglement entropy in Jackiw-Teitelboim gravity, arXiv:1807.06575 [INSPIRE].
- [23]S.W. Hawking, M.J. Perry and A. Strominger, Soft hair on black holes, Phys. Rev. Lett. 116 (2016) 231301 [arXiv:1601.00921] [INSPIRE].
- [24]L. Donnay, G. Giribet, H.A. Gonzalez and M. Pino, Supertranslations and superrotations at the black hole horizon, Phys. Rev. Lett. 116 (2016) 091101 [arXiv:1511.08687] [INSPIRE].ADSCrossRefGoogle Scholar
- [25]L. Donnay, G. Giribet, H.A. González and M. Pino, Extended symmetries at the black hole horizon, JHEP 09 (2016) 100 [arXiv:1607.05703] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
- [26]L. Donnay, G. Giribet, H.A. González and A. Puhm, Black hole memory effect, Phys. Rev. D 98 (2018) 124016 [arXiv:1809.07266] [INSPIRE].
- [27]S. Haco, S.W. Hawking, M.J. Perry and A. Strominger, Black hole entropy and soft hair, JHEP 12 (2018) 098 [arXiv:1810.01847] [INSPIRE].ADSCrossRefGoogle Scholar
- [28]D. Berenstein, A toy model for the AdS/CFT correspondence, JHEP 07 (2004) 018 [hep-th/0403110] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [29]S. Corley, A. Jevicki and S. Ramgoolam, Exact correlators of giant gravitons from dual N = 4 SYM theory, Adv. Theor. Math. Phys. 5 (2002) 809 [hep-th/0111222] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
- [30]S. Lee, S. Minwalla, M. Rangamani and N. Seiberg, Three point functions of chiral operators in D = 4, N = 4 SYM at large N, Adv. Theor. Math. Phys. 2 (1998) 697 [hep-th/9806074] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
- [31]A. Ghodsi, A.E. Mosaffa, O. Saremi and M.M. Sheikh-Jabbari, LLL vs. LLM: half BPS sector of N = 4 SYM equals to quantum Hall system, Nucl. Phys. B 729 (2005) 467 [hep-th/0505129] [INSPIRE].
- [32]D. Berenstein and A. Miller, Superposition induced topology changes in quantum gravity, JHEP 11 (2017) 121 [arXiv:1702.03011] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
- [33]D. Berenstein and A. Miller, Code subspaces for LLM geometries, Class. Quant. Grav. 35 (2018) 065003 [arXiv:1708.00035] [INSPIRE].
- [34]A. Dhar, G. Mandal and S.R. Wadia, Classical Fermi fluid and geometric action for c = 1, Int. J. Mod. Phys. A 8 (1993) 325 [hep-th/9204028] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [35]A. Dhar, Two-dimensional string theory from the c = 1 matrix model, Nucl. Phys. Proc. Suppl. B 45 (1996) 234.ADSMathSciNetCrossRefzbMATHGoogle Scholar
- [36]A. Dhar, G. Mandal and S.R. Wadia, W(∞) coherent states and path integral derivation of bosonization of nonrelativistic fermions in one-dimension, Mod. Phys. Lett. A 8 (1993) 3557 [hep-th/9309028] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
- [37]V. Balasubramanian et al., Quantum geometry and gravitational entropy, JHEP 12 (2007) 067 [arXiv:0705.4431] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
- [38]N.V. Suryanarayana, Half-BPS giants, free fermions and microstates of superstars, JHEP 01 (2006) 082 [hep-th/0411145] [INSPIRE].
- [39]J. Simon, Correlations vs connectivity in R-charge, JHEP 10 (2018) 048 [arXiv:1805.11279] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
- [40]J. McGreevy, L. Susskind and N. Toumbas, Invasion of the giant gravitons from Anti-de Sitter space, JHEP 06 (2000) 008 [hep-th/0003075] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
- [41]V. Balasubramanian, M. Berkooz, A. Naqvi and M.J. Strassler, Giant gravitons in conformal field theory, JHEP 04 (2002) 034 [hep-th/0107119] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [42]V. Balasubramanian, B. Czech, K. Larjo and J. Simon, Integrability versus information loss: a simple example, JHEP 11 (2006) 001 [hep-th/0602263] [INSPIRE].ADSCrossRefGoogle Scholar
- [43]J.M. Deutsch, Quantum statistical mechanics in a closed system, Phys. Rev. A 43 (1991) 2046.ADSCrossRefGoogle Scholar
- [44]M. Srednicki, Chaos and quantum thermalization, Phys. Rev. E 50 (1994) 888.ADSGoogle Scholar
- [45]N. Lashkari, A. Dymarsky and H. Liu, Eigenstate thermalization hypothesis in conformal field theory, J. Stat. Mech. 1803 (2018) 033101 [arXiv:1610.00302] [INSPIRE].MathSciNetCrossRefGoogle Scholar
- [46]V. Balasubramanian et al., Typicality versus thermality: an analytic distinction, Gen. Rel. Grav. 40 (2008) 1863 [hep-th/0701122] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
- [47]P. Hayden and G. Penington, Learning the alpha-bits of black holes, arXiv:1807.06041 [INSPIRE].
- [48]T. Faulkner and H. Wang, Probing beyond ETH at large c, JHEP 06 (2018) 123 [arXiv:1712.03464] [INSPIRE].ADSCrossRefGoogle Scholar
- [49]V. Balasubramanian et al., Emergent classical spacetime from microstates of an incipient black hole II, work in progress.Google Scholar
- [50]K. Papadodimas and S. Raju, Black hole interior in the holographic correspondence and the information paradox, Phys. Rev. Lett. 112 (2014) 051301 [arXiv:1310.6334] [INSPIRE].ADSCrossRefGoogle Scholar
- [51]H. Lin, O. Lunin and J.M. Maldacena, Bubbling AdS space and 1/2 BPS geometries, JHEP 10 (2004) 025 [hep-th/0409174] [INSPIRE].
- [52]A.E. Mosaffa and M.M. Sheikh-Jabbari, On classification of the bubbling geometries, JHEP 04 (2006) 045 [hep-th/0602270] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [53]K. Skenderis and M. Taylor, Anatomy of bubbling solutions, JHEP 09 (2007) 019 [arXiv:0706.0216] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [54]L.G. Yaffe, Large N limits as classical mechanics, Rev. Mod. Phys. 54 (1982) 407 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [55]E. Witten, Coadjoint orbits of the Virasoro group, Commun. Math. Phys. 114 (1988) 1 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
- [56]A. Belin, A. Lewkowycz and G. Sárosi, The boundary dual of the bulk symplectic form, Phys. Lett. B 789 (2019) 71 [arXiv:1806.10144] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [57]A. Caldeira and A. Leggett, Path integral approach to quantum brownian motion, Physica A 121 (1983) 587.Google Scholar
- [58]C. Agon, V. Balasubramanian, S. Kasko and A. Lawrence, Coarse grained quantum dynamics, Phys. Rev. D 98 (2018) 025019 [arXiv:1412.3148] [INSPIRE].ADSGoogle Scholar
- [59]V. Balasubramanian, J. de Boer, S. El-Showk and I. Messamah, Black holes as effective geometries, Class. Quant. Grav. 25 (2008) 214004 [arXiv:0811.0263] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
- [60]A. Dhar, G. Mandal and N.V. Suryanarayana, Exact operator bosonization of finite number of fermions in one space dimension, JHEP 01 (2006) 118 [hep-th/0509164] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar