Advertisement

Journal of High Energy Physics

, 2019:192 | Cite as

On the supersymmetry invariance of flat supergravity with boundary

  • Patrick ConchaEmail author
  • Lucrezia Ravera
  • Evelyn Rodríguez
Open Access
Regular Article - Theoretical Physics
  • 18 Downloads

Abstract

The supersymmetry invariance of flat supergravity (i.e., supergravity in the absence of any internal scale in the Lagrangian) in four dimensions on a manifold with non-trivial boundary is explored. Using a geometric approach we find that the supersymmetry invariance of the Lagrangian requires to add appropriate boundary terms. This is achieved by considering additional gauge fields to the boundary without modifying the bulk Lagrangian. We also construct an enlarged supergravity model from which, in the vanishing cosmological constant limit, flat supergravity with a non-trivial boundary emerges properly.

Keywords

Supergravity Models Differential and Algebraic Geometry 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J.W. York, Jr., Role of conformal three geometry in the dynamics of gravitation, Phys. Rev. Lett. 28 (1972) 1082 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    G.W. Gibbons and S.W. Hawking, Action Integrals and Partition Functions in Quantum Gravity, Phys. Rev. D 15 (1977) 2752 [INSPIRE].ADSGoogle Scholar
  3. [3]
    J.D. Brown and J.W. York, Jr., Quasilocal energy and conserved charges derived from the gravitational action, Phys. Rev. D 47 (1993) 1407 [gr-qc/9209012] [INSPIRE].
  4. [4]
    P. Hořava and E. Witten, Eleven-dimensional supergravity on a manifold with boundary, Nucl. Phys. B 475 (1996) 94 [hep-th/9603142] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  5. [5]
    J.M. Maldacena, The Large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  7. [7]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    E. D’Hoker and D.Z. Freedman, Supersymmetric gauge theories and the AdS/CFT correspondence, in Strings, Branes and Extra Dimensions: TASI 2001: Proceedings, pp. 3–158, 2002, hep-th/0201253 [INSPIRE].
  10. [10]
    G. Compere and D. Marolf, Setting the boundary free in AdS/CFT, Class. Quant. Grav. 25 (2008) 195014 [arXiv:0805.1902] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    A.J. Amsel and G. Compère, Supergravity at the boundary of AdS supergravity, Phys. Rev. D 79 (2009) 085006 [arXiv:0901.3609] [INSPIRE].ADSMathSciNetGoogle Scholar
  12. [12]
    V. Balasubramanian and P. Kraus, A stress tensor for Anti-de Sitter gravity, Commun. Math. Phys. 208 (1999) 413 [hep-th/9902121] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    J. de Boer, E.P. Verlinde and H.L. Verlinde, On the holographic renormalization group, JHEP 08 (2000) 003 [hep-th/9912012] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    E.P. Verlinde and H.L. Verlinde, RG flow, gravity and the cosmological constant, JHEP 05 (2000) 034 [hep-th/9912018] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    J. de Boer, The Holographic renormalization group, Fortsch. Phys. 49 (2001) 339 [hep-th/0101026] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  17. [17]
    K. Skenderis, Lecture notes on holographic renormalization, Class. Quant. Grav. 19 (2002) 5849 [hep-th/0209067] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    A. Lawrence and A. Sever, Holography and renormalization in Lorentzian signature, JHEP 10 (2006) 013 [hep-th/0606022] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    I. Heemskerk and J. Polchinski, Holographic and Wilsonian Renormalization Groups, JHEP 06 (2011) 031 [arXiv:1010.1264] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    D. Astefanesei, N. Banerjee and S. Dutta, (Un)attractor black holes in higher derivative AdS gravity, JHEP 11 (2008) 070 [arXiv:0806.1334] [INSPIRE].
  21. [21]
    Y. Brihaye and E. Radu, Black objects in the Einstein-Gauss-Bonnet theory with negative cosmological constant and the boundary counterterm method, JHEP 09 (2008) 006 [arXiv:0806.1396] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    A. Anabalón, D. Astefanesei, D. Choque and C. Martínez, Trace Anomaly and Counterterms in Designer Gravity, JHEP 03 (2016) 117 [arXiv:1511.08759] [INSPIRE].
  23. [23]
    D. Astefanesei, R. Ballesteros, D. Choque and R. Rojas, Scalar charges and the first law of black hole thermodynamics, Phys. Lett. B 782 (2018) 47 [arXiv:1803.11317] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  24. [24]
    G. Esposito, A. Yu. Kamenshchik and K. Kirsten, One loop effective action for Euclidean Maxwell theory on manifolds with boundary, Phys. Rev. D 54 (1996) 7328 [hep-th/9606132] [INSPIRE].ADSMathSciNetGoogle Scholar
  25. [25]
    I.G. Moss, Boundary terms for eleven-dimensional supergravity and M-theory, Phys. Lett. B 577 (2003) 71 [hep-th/0308159] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    P. van Nieuwenhuizen and D.V. Vassilevich, Consistent boundary conditions for supergravity, Class. Quant. Grav. 22 (2005) 5029 [hep-th/0507172] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    D.V. Belyaev, Boundary conditions in supergravity on a manifold with boundary, JHEP 01 (2006) 047 [hep-th/0509172] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    P. van Nieuwenhuizen, A. Rebhan, D.V. Vassilevich and R. Wimmer, Boundary terms in supergravity and supersymmetry, Int. J. Mod. Phys. D 15 (2006) 1643 [hep-th/0606075] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    D.V. Belyaev and P. van Nieuwenhuizen, Simple d = 4 supergravity with a boundary, JHEP 09 (2008) 069 [arXiv:0806.4723] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    D.V. Belyaev and P. van Nieuwenhuizen, Tensor calculus for supergravity on a manifold with boundary, JHEP 02 (2008) 047 [arXiv:0711.2272] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    D. Grumiller and P. van Nieuwenhuizen, Holographic counterterms from local supersymmetry without boundary conditions, Phys. Lett. B 682 (2010) 462 [arXiv:0908.3486] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    P.S. Howe, T.G. Pugh, K.S. Stelle and C. Strickland-Constable, Ectoplasm with an Edge, JHEP 08 (2011) 081 [arXiv:1104.4387] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  33. [33]
    L. Andrianopoli and R. D’Auria, N = 1 and N = 2 pure supergravities on a manifold with boundary, JHEP 08 (2014) 012 [arXiv:1405.2010] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    L. Di Pietro, N. Klinghoffer and I. Shamir, On Supersymmetry, Boundary Actions and Brane Charges, JHEP 02 (2016) 163 [arXiv:1502.05976] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    M.C. Ipinza, P.K. Concha, L. Ravera and E.K. Rodríguez, On the Supersymmetric Extension of Gauss-Bonnet like Gravity, JHEP 09 (2016) 007 [arXiv:1607.00373] [INSPIRE].
  36. [36]
    D.Z. Freedman, K. Pilch, S.S. Pufu and N.P. Warner, Boundary Terms and Three-Point Functions: An AdS/CFT Puzzle Resolved, JHEP 06 (2017) 053 [arXiv:1611.01888] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    P. Benetti Genolini, D. Cassani, D. Martelli and J. Sparks, Holographic renormalization and supersymmetry, JHEP 02 (2017) 132 [arXiv:1612.06761] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    A. Anabalón, D. Astefanesei, A. Gallerati and M. Trigiante, Hairy Black Holes and Duality in an Extended Supergravity Model, JHEP 04 (2018) 058 [arXiv:1712.06971] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    L. Andrianopoli, B.L. Cerchiai, R. D’Auria and M. Trigiante, Unconventional supersymmetry at the boundary of AdS 4 supergravity, JHEP 04 (2018) 007 [arXiv:1801.08081] [INSPIRE].CrossRefzbMATHGoogle Scholar
  40. [40]
    A. Banaudi and L. Ravera, Generalized AdS-Lorentz deformed supergravity on a manifold with boundary, Eur. Phys. J. Plus 133 (2018) 514 [arXiv:1803.08738] [INSPIRE].CrossRefGoogle Scholar
  41. [41]
    R. Aros, M. Contreras, R. Olea, R. Troncoso and J. Zanelli, Conserved charges for gravity with locally AdS asymptotics, Phys. Rev. Lett. 84 (2000) 1647 [gr-qc/9909015] [INSPIRE].
  42. [42]
    R. Aros, M. Contreras, R. Olea, R. Troncoso and J. Zanelli, Conserved charges for even dimensional asymptotically AdS gravity theories, Phys. Rev. D 62 (2000) 044002 [hep-th/9912045] [INSPIRE].ADSMathSciNetGoogle Scholar
  43. [43]
    P. Mora, R. Olea, R. Troncoso and J. Zanelli, Finite action principle for Chern-Simons AdS gravity, JHEP 06 (2004) 036 [hep-th/0405267] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  44. [44]
    R. Olea, Mass, angular momentum and thermodynamics in four-dimensional Kerr-AdS black holes, JHEP 06 (2005) 023 [hep-th/0504233] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  45. [45]
    D.P. Jatkar, G. Kofinas, O. Mišković and R. Olea, Conformal Mass in AdS gravity, Phys. Rev. D 89 (2014) 124010 [arXiv:1404.1411] [INSPIRE].ADSGoogle Scholar
  46. [46]
    S.W. MacDowell and F. Mansouri, Unified Geometric Theory of Gravity and Supergravity, Phys. Rev. Lett. 38 (1977) 739 [Erratum ibid. 38 (1977) 1376] [INSPIRE].
  47. [47]
    S. Bonanos, J. Gomis, K. Kamimura and J. Lukierski, Maxwell Superalgebra and Superparticle in Constant Gauge Badkgrounds, Phys. Rev. Lett. 104 (2010) 090401 [arXiv:0911.5072] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  48. [48]
    D.V. Soroka and V.A. Soroka, Semi-simple extension of the (super)Poincaré algebra, Adv. High Energy Phys. 2009 (2009) 234147 [hep-th/0605251] [INSPIRE].CrossRefzbMATHGoogle Scholar
  49. [49]
    J. Gomis, K. Kamimura and J. Lukierski, Deformations of Maxwell algebra and their Dynamical Realizations, JHEP 08 (2009) 039 [arXiv:0906.4464] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  50. [50]
    L. Castellani, R. D’Auria and P. Fré, Supergravity and superstrings: A geometric prespective. Vol. 1 and 2, World Scientific, Singapore (1991).Google Scholar
  51. [51]
    P.K. Concha, E.K. Rodríguez and P. Salgado, Generalized supersymmetric cosmological term in N = 1 Supergravity, JHEP 08 (2015) 009 [arXiv:1504.01898] [INSPIRE].
  52. [52]
    H. Bacry, P. Combe and J.L. Richard, Group-theoretical analysis of elementary particles in an external electromagnetic field. 1. the relativistic particle in a constant and uniform field, Nuovo Cim. A 67 (1970) 267 [INSPIRE].
  53. [53]
    R. Schrader, The Maxwell group and the quantum theory of particles in classical homogeneous electromagnetic fields, Fortsch. Phys. 20 (1972) 701 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  54. [54]
    J.D. Edelstein, M. Hassaine, R. Troncoso and J. Zanelli, Lie-algebra expansions, Chern-Simons theories and the Einstein-Hilbert Lagrangian, Phys. Lett. B 640 (2006) 278 [hep-th/0605174] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  55. [55]
    F. Izaurieta, E. Rodríguez, P. Minning, P. Salgado and A. Perez, Standard General Relativity from Chern-Simons Gravity, Phys. Lett. B 678 (2009) 213 [arXiv:0905.2187] [INSPIRE].
  56. [56]
    P.K. Concha, D.M. Peñafiel, E.K. Rodríguez and P. Salgado, Even-dimensional General Relativity from Born-Infeld gravity, Phys. Lett. B 725 (2013) 419 [arXiv:1309.0062] [INSPIRE].
  57. [57]
    P.K. Concha, D.M. Peñafiel, E.K. Rodríguez and P. Salgado, Chern-Simons and Born-Infeld gravity theories and Maxwell algebras type, Eur. Phys. J. C 74 (2014) 2741 [arXiv:1402.0023] [INSPIRE].
  58. [58]
    P.K. Concha, D.M. Peñafiel, E.K. Rodríguez and P. Salgado, Generalized Poincaré algebras and Lovelock-Cartan gravity theory, Phys. Lett. B 742 (2015) 310 [arXiv:1405.7078] [INSPIRE].
  59. [59]
    P. Salgado, R.J. Szabo and O. Valdivia, Topological gravity and transgression holography, Phys. Rev. D 89 (2014) 084077 [arXiv:1401.3653] [INSPIRE].ADSGoogle Scholar
  60. [60]
    S. Hoseinzadeh and A. Rezaei-Aghdam, (2 + 1)-dimensional gravity from Maxwell and semisimple extension of the Poincaré gauge symmetric models, Phys. Rev. D 90 (2014) 084008 [arXiv:1402.0320] [INSPIRE].
  61. [61]
    R. Caroca, P. Concha, O. Fierro, E. Rodríguez and P. Salgado-ReboLledó, Generalized Chern-Simons higher-spin gravity theories in three dimensions, Nucl. Phys. B 934 (2018) 240 [arXiv:1712.09975] [INSPIRE].
  62. [62]
    L. Avilés, E. Frodden, J. Gomis, D. Hidalgo and J. Zanelli, Non-Relativistic Maxwell Chern-Simons Gravity, JHEP 05 (2018) 047 [arXiv:1802.08453] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  63. [63]
    P. Concha, N. Merino, O. Mišković, E. Rodríguez, P. Salgado-ReboLledó and O. Valdivia, Asymptotic symmetries of three-dimensional Chern-Simons gravity for the Maxwell algebra, JHEP 10 (2018) 079 [arXiv:1805.08834] [INSPIRE].
  64. [64]
    P.K. Concha, O. Fierro, E.K. Rodríguez and P. Salgado, Chern-Simons supergravity in D = 3 and Maxwell superalgebra, Phys. Lett. B 750 (2015) 117 [arXiv:1507.02335] [INSPIRE].
  65. [65]
    P.K. Concha, O. Fierro and E.K. Rodríguez, Inönü-Wigner contraction and D = 2 + 1 supergravity, Eur. Phys. J. C 77 (2017) 48 [arXiv:1611.05018] [INSPIRE].
  66. [66]
    P. Concha, D.M. Peñafiel and E. Rodríguez, On the Maxwell supergravity and flat limit in 2 + 1 dimensions, Phys. Lett. B 785 (2018) 247 [arXiv:1807.00194] [INSPIRE].
  67. [67]
    J.A. de Azcarraga, J.M. Izquierdo, J. Lukierski and M. Woronowicz, Generalizations of Maxwell (super)algebras by the expansion method, Nucl. Phys. B 869 (2013) 303 [arXiv:1210.1117] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  68. [68]
    J.A. de Azcarraga and J.M. Izquierdo, Minimal D = 4 supergravity from the superMaxwell algebra, Nucl. Phys. B 885 (2014) 34 [arXiv:1403.4128] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  69. [69]
    P.K. Concha and E.K. Rodríguez, Maxwell Superalgebras and Abelian Semigroup Expansion, Nucl. Phys. B 886 (2014) 1128 [arXiv:1405.1334] [INSPIRE].
  70. [70]
    P.K. Concha and E.K. Rodríguez, N = 1 Supergravity and Maxwell superalgebras, JHEP 09 (2014) 090 [arXiv:1407.4635] [INSPIRE].
  71. [71]
    D.M. Peñafiel and L. Ravera, On the Hidden Maxwell Superalgebra underlying D = 4 Supergravity, Fortsch. Phys. 65 (2017) 1700005 [arXiv:1701.04234] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  72. [72]
    L. Ravera, Hidden role of Maxwell superalgebras in the free differential algebras of D = 4 and D = 11 supergravity, Eur. Phys. J. C 78 (2018) 211[arXiv:1801.08860] [INSPIRE].
  73. [73]
    J.A. de Azcarraga, K. Kamimura and J. Lukierski, Generalized cosmological term from Maxwell symmetries, Phys. Rev. D 83 (2011) 124036 [arXiv:1012.4402] [INSPIRE].ADSGoogle Scholar
  74. [74]
    D.M. Peñafiel and L. Ravera, Generalized cosmological term in D = 4 supergravity from a new AdS-Lorentz superalgebra, Eur. Phys. J. C 78 (2018) 945 [arXiv:1807.07673] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    P.K. Concha, R. Durka, N. Merino and E.K. Rodríguez, New family of Maxwell like algebras, Phys. Lett. B 759 (2016) 507 [arXiv:1601.06443] [INSPIRE].
  76. [76]
    R. Durka, Resonant algebras and gravity, J. Phys. A 50 (2017) 145202 [arXiv:1605.00059] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  77. [77]
    P.K. Concha, R. Durka, C. Inostroza, N. Merino and E.K. Rodríguez, Pure Lovelock gravity and Chern-Simons theory, Phys. Rev. D 94 (2016) 024055 [arXiv:1603.09424] [INSPIRE].
  78. [78]
    P.K. Concha, N. Merino and E.K. Rodríguez, Lovelock gravities from Born-Infeld gravity theory, Phys. Lett. B 765 (2017) 395 [arXiv:1606.07083] [INSPIRE].
  79. [79]
    P. Concha and E. Rodríguez, Generalized Pure Lovelock Gravity, Phys. Lett. B 774 (2017) 616 [arXiv:1708.08827] [INSPIRE].
  80. [80]
    S. Bonanos, J. Gomis, K. Kamimura and J. Lukierski, Deformations of Maxwell Superalgebras and Their Applications, J. Math. Phys. 51 (2010) 102301 [arXiv:1005.3714] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  81. [81]
    D.V. Soroka and V.A. Soroka, Semi-simple o(N)-extended super-Poincaré algebra, arXiv:1004.3194 [INSPIRE].
  82. [82]
    O. Fierro, F. Izaurieta, P. Salgado and O. Valdivia, Minimal AdS-Lorentz supergravity in three-dimensions, Phys. Lett. B 788 (2019) 198 [arXiv:1401.3697] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  83. [83]
    S. Bonanos and J. Gomis, A Note on the Chevalley-Eilenberg Cohomology for the Galilei and Poincaré Algebras, J. Phys. A 42 (2009) 145206 [arXiv:0808.2243] [INSPIRE].ADSzbMATHGoogle Scholar
  84. [84]
    S. Bonanos and J. Gomis, Infinite Sequence of Poincaré Group Extensions: Structure and Dynamics, J. Phys. A 43 (2010) 015201 [arXiv:0812.4140] [INSPIRE].ADSzbMATHGoogle Scholar
  85. [85]
    J. Gomis, K. Kamimura and J. Lukierski, Deformed Maxwell Algebras and their Realizations, arXiv:0910.0326 [INSPIRE].
  86. [86]
    G.W. Gibbons, J. Gomis and C.N. Pope, Deforming the Maxwell-Sim Algebra, Phys. Rev. D 82 (2010) 065002 [arXiv:0910.3220] [INSPIRE].ADSGoogle Scholar
  87. [87]
    P. Concha, N. Merino, E. Rodríguez, P. Salgado-ReboLledó and O. Valdivia, Semi-simple enlargement of the \( \mathfrak{b}\mathfrak{m}{\mathfrak{s}}_3 \) algebra from a \( \mathfrak{so}\left(2,2\right)\oplus \mathfrak{so}\left(2,1\right) \) Chern-Simons theory, arXiv:1810.12256 [INSPIRE].
  88. [88]
    R. D’Auria and P. Fré, Geometric Supergravity in d = 11 and Its Hidden Supergroup, Nucl. Phys. B 201 (1982) 101 [Erratum ibid. B 206 (1982) 496] [INSPIRE].
  89. [89]
    M.B. Green, Supertranslations, Superstrings and Chern-Simons Forms, Phys. Lett. B 223 (1989) 157 [INSPIRE].ADSCrossRefGoogle Scholar
  90. [90]
    L. Andrianopoli, R. D’Auria and L. Ravera, Hidden Gauge Structure of Supersymmetric Free Differential Algebras, JHEP 08 (2016) 095 [arXiv:1606.07328] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  91. [91]
    L. Andrianopoli, R. D’Auria and L. Ravera, More on the Hidden Symmetries of 11D Supergravity, Phys. Lett. B 772 (2017) 578 [arXiv:1705.06251] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  92. [92]
    O. Mišković and R. Olea, Topological regularization and self-duality in four-dimensional anti-de Sitter gravity, Phys. Rev. D 79 (2009) 124020 [arXiv:0902.2082] [INSPIRE].ADSMathSciNetGoogle Scholar
  93. [93]
    O. Mišković, R. Olea and M. Tsoukalas, Renormalized AdS action and Critical Gravity, JHEP 08 (2014) 108 [arXiv:1404.5993] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  94. [94]
    L. Andrianopoli et al., N = 2 supergravity and N = 2 superYang-Mills theory on general scalar manifolds: Symplectic covariance, gaugings and the momentum map, J. Geom. Phys. 23 (1997) 111 [hep-th/9605032] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  95. [95]
    L. Andrianopoli, P. Concha, R. D’Auria, E. Rodríguez and M. Trigiante, Observations on BI from \( \mathcal{N} \) = 2 Supergravity and the General Ward Identity, JHEP 11 (2015) 061 [arXiv:1508.01474] [INSPIRE].
  96. [96]
    L. Ciambelli, C. Marteau, A.C. Petkou, P.M. Petropoulos and K. Siampos, Flat holography and Carrollian fluids, JHEP 07 (2018) 165 [arXiv:1802.06809] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2019

Authors and Affiliations

  • Patrick Concha
    • 1
    Email author
  • Lucrezia Ravera
    • 2
  • Evelyn Rodríguez
    • 3
  1. 1.Instituto de FísicaPontificia Universidad Católica de ValparaísoValparaisoChile
  2. 2.INFN, Sezione di MilanoMilanoItaly
  3. 3.Departamento de Ciencias, Facultad de Artes LiberalesUniversidad Adolfo IbáñezViña del MarChile

Personalised recommendations