Advertisement

Journal of High Energy Physics

, 2019:189 | Cite as

Gravitational production of super-Hubble-mass particles: an analytic approach

  • Daniel J. H. Chung
  • Edward W. Kolb
  • Andrew J. LongEmail author
Open Access
Regular Article - Theoretical Physics
  • 14 Downloads

Abstract

Through a mechanism similar to perturbative particle scattering, particles of mass mχ larger than the Hubble expansion rate Hinf during inflation can be gravitationally produced at the end of inflation without the exponential suppression powers of exp(−mχ/Hinf ). Here we develop an analytic formalism for computing particle production for such massive particles. We apply our formalism to specific models that have been previously been studied only numerically, and we find that our analytical approximations reproduce those numerical estimates well.

Keywords

Cosmology of Theories beyond the SM Space-Time Symmetries 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    A.H. Guth, The inflationary universe: a possible solution to the horizon and flatness problems, Phys. Rev. D 23 (1981) 347 [INSPIRE].
  2. [2]
    A.D. Linde, A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems, Phys. Lett. 108B (1982) 389 [INSPIRE].
  3. [3]
    A. Albrecht and P.J. Steinhardt, Cosmology for grand unified theories with radiatively induced symmetry breaking, Phys. Rev. Lett. 48 (1982) 1220 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    A.A. Starobinsky, A new type of isotropic cosmological models without singularity, Phys. Lett. B 91 (1980) 99 [INSPIRE].
  5. [5]
    E.W. Kolb and M.S. Turner, The early universe, Front. Phys. 69 (1990) 1 [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  6. [6]
    R. Allahverdi, R. Brandenberger, F.-Y. Cyr-Racine and A. Mazumdar, Reheating in inflationary cosmology: theory and applications, Ann. Rev. Nucl. Part. Sci. 60 (2010) 27 [arXiv:1001.2600].
  7. [7]
    M.A. Amin, M.P. Hertzberg, D.I. Kaiser and J. Karouby, Nonperturbative dynamics of reheating after inflation: a review, Int. J. Mod. Phys. D 24 (2014) 1530003 [arXiv:1410.3808] [INSPIRE].
  8. [8]
    D. Baumann and L. McAllister, Inflation and string theory, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge U.K. (2015).Google Scholar
  9. [9]
    K. Sato and J. Yokoyama, Inflationary cosmology: first 30+ years, Int. J. Mod. Phys. D 24 (2015) 1530025 [INSPIRE].
  10. [10]
    L. Boubekeur and D.H. Lyth, Hilltop inflation, JCAP 07 (2005) 010 [hep-ph/0502047] [INSPIRE].
  11. [11]
    K. Schmitz and T.T. Yanagida, Axion isocurvature perturbations in low-scale models of hybrid inflation, Phys. Rev. D 98 (2018) 075003 [arXiv:1806.06056] [INSPIRE].
  12. [12]
    C. Pallis and Q. Shafi, Update on minimal supersymmetric hybrid inflation in light of PLANCK, Phys. Lett. B 725 (2013) 327 [arXiv:1304.5202] [INSPIRE].
  13. [13]
    M. Bose, M. Dine, A. Monteux and L.S. Haskins, Small field inflation and the spectral index, JCAP 01 (2014) 038 [arXiv:1310.2609] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    R. Armillis and C. Pallis, Implementing hilltop F-term hybrid inflation in supergravity, in Recent advances in cosmology, A. Travena and B. Soren eds., Nova Science Publishers, U.S.A. (2013), arXiv:1211.4011 [INSPIRE].
  15. [15]
    C.-M. Lin and K. Cheung, Super hilltop inflation, JCAP 03 (2009) 012 [arXiv:0812.2731] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    K. Kohri, C.-M. Lin and D.H. Lyth, More hilltop inflation models, JCAP 12 (2007) 004 [arXiv:0707.3826] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    Y. Ema, K. Nakayama and Y. Tang, Production of purely gravitational dark matter, JHEP 09 (2018) 135 [arXiv:1804.07471] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  18. [18]
    Y. Ema, R. Jinno, K. Mukaida and K. Nakayama, Gravitational effects on inflaton decay, JCAP 05 (2015) 038 [arXiv:1502.02475] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    Y. Ema, R. Jinno, K. Mukaida and K. Nakayama, Gravitational particle production in oscillating backgrounds and its cosmological implications, Phys. Rev. D 94 (2016) 063517 [arXiv:1604.08898] [INSPIRE].
  20. [20]
    S. Hashiba and J. Yokoyama, Gravitational reheating through conformally coupled superheavy scalar particles, JCAP 01 (2019) 028 [arXiv:1809.05410] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    A.D. Dolgov and D.P. Kirilova, On particle creation by a time dependent scalar field, Sov. J. Nucl. Phys. 51 (1990) 172 [INSPIRE].Google Scholar
  22. [22]
    J.H. Traschen and R.H. Brandenberger, Particle production during out-of-equilibrium phase transitions, Phys. Rev. D 42 (1990) 2491 [INSPIRE].
  23. [23]
    Y. Shtanov, J.H. Traschen and R.H. Brandenberger, Universe reheating after inflation, Phys. Rev. D 51 (1995) 5438 [hep-ph/9407247] [INSPIRE].
  24. [24]
    L. Kofman, A.D. Linde and A.A. Starobinsky, Towards the theory of reheating after inflation, Phys. Rev. D 56 (1997) 3258 [hep-ph/9704452] [INSPIRE].
  25. [25]
    D.J.H. Chung, Classical inflation field induced creation of superheavy dark matter, Phys. Rev. D 67 (2003) 083514 [hep-ph/9809489] [INSPIRE].
  26. [26]
    N.D. Birrell and P.C.W. Davies, Quantum fields in curved space, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, U.K. (1984).Google Scholar
  27. [27]
    A. Addazi, S.V. Ketov and M. Yu. Khlopov, Gravitino and Polonyi production in supergravity, Eur. Phys. J. C 78 (2018) 642 [arXiv:1708.05393] [INSPIRE].
  28. [28]
    J.L. Evans, M.A.G. Garcia and K.A. Olive, The moduli and gravitino (non)-problems in models with strongly stabilized moduli, JCAP 03 (2014) 022 [arXiv:1311.0052] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    G.D. Coughlan, W. Fischler, E.W. Kolb, S. Raby and G.G. Ross, Cosmological problems for the Polonyi potential, Phys. Lett. B 131 (1983) 59.Google Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of Wisconsin-MadisonMadisonU.S.A.
  2. 2.Kavli Institute for Cosmological Physics and Enrico Fermi InstituteUniversity of ChicagoChicagoU.S.A.
  3. 3.Leinweber Center for Theoretical PhysicsUniversity of MichiganAnn ArborU.S.A.

Personalised recommendations