Advertisement

Journal of High Energy Physics

, 2019:188 | Cite as

Precise predictions for \( t\overline{t}\gamma /t\overline{t} \) cross section ratios at the LHC

  • G. Bevilacqua
  • H. B. Hartanto
  • M. Kraus
  • T. Weber
  • M. WorekEmail author
Open Access
Regular Article - Theoretical Physics
  • 15 Downloads

Abstract

With the goal of increasing the precision of NLO QCD predictions for the \( pp\to t\overline{t}\gamma \) process in the di-lepton top quark decay channel we present theoretical predictions for the \( \mathrm{\mathcal{R}}={\sigma}_{t\overline{t}\gamma }/{\sigma}_{t\overline{t}} \) cross section ratio. Results for the latter together with various differential cross section ratios are given for the LHC with the Run II energy of \( \sqrt{s}=13 \) TeV. Fully realistic NLO computations for \( t\overline{t} \) and \( t\overline{t}\gamma \) production are employed. They are based on matrix elements for \( {e}^{+}{\nu}_e{\mu}^{-}{\overline{\nu}}_{\mu }b\overline{b} \) and \( {e}^{+}{\nu}_e{\mu}^{-}{\overline{\nu}}_{\mu }b\overline{b}\gamma \) processes and include all resonant and non-resonant diagrams, interferences, and off-shell effects of the top quarks and the W gauge bosons. Various renormalisation and factorisation scale choices and parton density functions are examined to assess their impact on the cross section ratio. Depending on the transverse momentum cut on the hard photon a judicious choice of a dynamical scale allows us to obtain 1%–3% percent precision on \( \mathrm{\mathcal{R}} \). Moreover, for differential cross section ratios theoretical uncertainties in the range of 1%-6% have been estimated. Until now such high precision predictions have only been reserved for the top quark pair production at NNLO QCD. Thus, \( \mathrm{\mathcal{R}} \) at NLO in QCD represents a very precise observable to be measured at the LHC for example to study the top quark charge asymmetry or to probe the strength and the structure of the t-\( \overline{t} \)-γ vertex. The latter can shed some light on possible new physics that can reveal itself only once sufficiently precise theoretical predictions are available.

Keywords

NLO Computations QCD Phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    ATLAS collaboration, Observation of top-quark pair production in association with a photon and measurement of the \( t\overline{t}\gamma \) production cross section in pp collisions at \( \sqrt{s}=7 \) TeV using the ATLAS detector, Phys. Rev. D 91 (2015) 072007 [arXiv:1502.00586] [INSPIRE].
  2. [2]
    CMS collaboration, Measurement of the semileptonic \( t\overline{t}+\gamma \) production cross section in pp collisions at \( \sqrt{s}=8 \) TeV, JHEP 10 (2017) 006 [arXiv:1706.08128] [INSPIRE].
  3. [3]
    ATLAS collaboration, Measurement of the \( t\overline{t}\gamma \) production cross section in proton-proton collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 11 (2017) 086 [arXiv:1706.03046] [INSPIRE].
  4. [4]
    O. Bessidskaia Bylund, F. Maltoni, I. Tsinikos, E. Vryonidou and C. Zhang, Probing top quark neutral couplings in the Standard Model Effective Field Theory at NLO in QCD, JHEP 05 (2016) 052 [arXiv:1601.08193] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    M. Schulze and Y. Soreq, Pinning down electroweak dipole operators of the top quark, Eur. Phys. J. C 76 (2016) 466 [arXiv:1603.08911] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    G. Bevilacqua, H.B. Hartanto, M. Kraus, T. Weber and M. Worek, Hard Photons in Hadroproduction of Top Quarks with Realistic Final States, JHEP 10 (2018) 158 [arXiv:1803.09916] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    A. Denner, S. Dittmaier, S. Kallweit and S. Pozzorini, NLO QCD corrections to WWbb production at hadron colliders, Phys. Rev. Lett. 106 (2011) 052001 [arXiv:1012.3975] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    G. Bevilacqua, M. Czakon, A. van Hameren, C.G. Papadopoulos and M. Worek, Complete off-shell effects in top quark pair hadroproduction with leptonic decay at next-to-leading order, JHEP 02 (2011) 083 [arXiv:1012.4230] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    A. Denner, S. Dittmaier, S. Kallweit and S. Pozzorini, NLO QCD corrections to off-shell top-antitop production with leptonic decays at hadron colliders, JHEP 10 (2012) 110 [arXiv:1207.5018] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    G. Bevilacqua et al., HELAC-NLO, Comput. Phys. Commun. 184 (2013) 986 [arXiv:1110.1499] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    A. van Hameren, C.G. Papadopoulos and R. Pittau, Automated one-loop calculations: A Proof of concept, JHEP 09 (2009) 106 [arXiv:0903.4665] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    G. Ossola, C.G. Papadopoulos and R. Pittau, CutTools: A Program implementing the OPP reduction method to compute one-loop amplitudes, JHEP 03 (2008) 042 [arXiv:0711.3596] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    M. Czakon, C.G. Papadopoulos and M. Worek, Polarizing the Dipoles, JHEP 08 (2009) 085 [arXiv:0905.0883] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    G. Bevilacqua, M. Czakon, M. Kubocz and M. Worek, Complete Nagy-Soper subtraction for next-to-leading order calculations in QCD, JHEP 10 (2013) 204 [arXiv:1308.5605] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    S. Catani and M.H. Seymour, A General algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. B 510 (1998) 503] [hep-ph/9605323] [INSPIRE].
  16. [16]
    S. Catani, S. Dittmaier, M.H. Seymour and Z. Trócsányi, The Dipole formalism for next-to-leading order QCD calculations with massive partons, Nucl. Phys. B 627 (2002) 189 [hep-ph/0201036] [INSPIRE].
  17. [17]
    A. van Hameren, Kaleu: A General-Purpose Parton-Level Phase Space Generator, arXiv:1003.4953 [INSPIRE].
  18. [18]
    A. Denner, S. Dittmaier, M. Roth and D. Wackeroth, Predictions for all processes e + e 4 fermions + γ, Nucl. Phys. B 560 (1999) 33 [hep-ph/9904472] [INSPIRE].
  19. [19]
    A. Denner, S. Dittmaier, M. Roth and L.H. Wieders, Electroweak corrections to charged-current e + e 4 fermion processes: Technical details and further results, Nucl. Phys. B 724 (2005) 247 [Erratum ibid. B 854 (2012) 504] [hep-ph/0505042] [INSPIRE].
  20. [20]
    A. van Hameren, OneLOop: For the evaluation of one-loop scalar functions, Comput. Phys. Commun. 182 (2011) 2427 [arXiv:1007.4716] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  21. [21]
    G. Bevilacqua, H.B. Hartanto, M. Kraus and M. Worek, Top Quark Pair Production in Association with a Jet with Next-to-Leading-Order QCD Off-Shell Effects at the Large Hadron Collider, Phys. Rev. Lett. 116 (2016) 052003 [arXiv:1509.09242] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    G. Bevilacqua, H.B. Hartanto, M. Kraus and M. Worek, Off-shell Top Quarks with One Jet at the LHC: A comprehensive analysis at NLO QCD, JHEP 11 (2016) 098 [arXiv:1609.01659] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    A. Buckley et al., LHAPDF6: parton density access in the LHC precision era, Eur. Phys. J. C 75 (2015) 132 [arXiv:1412.7420] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    J. Butterworth et al., PDF4LHC recommendations for LHC Run II, J. Phys. G 43 (2016) 023001 [arXiv:1510.03865] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    S. Dulat et al., New parton distribution functions from a global analysis of quantum chromodynamics, Phys. Rev. D 93 (2016) 033006 [arXiv:1506.07443] [INSPIRE].ADSGoogle Scholar
  26. [26]
    L.A. Harland-Lang, A.D. Martin, P. Motylinski and R.S. Thorne, Parton distributions in the LHC era: MMHT 2014 PDFs, Eur. Phys. J. C 75 (2015) 204 [arXiv:1412.3989] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    NNPDF collaboration, Parton distributions for the LHC Run II, JHEP 04 (2015) 040 [arXiv:1410.8849] [INSPIRE].
  28. [28]
    M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  29. [29]
    S. Frixione, Isolated photons in perturbative QCD, Phys. Lett. B 429 (1998) 369 [hep-ph/9801442] [INSPIRE].
  30. [30]
    R. Bonciani, S. Catani, M.L. Mangano and P. Nason, NLL resummation of the heavy quark hadroproduction cross-section, Nucl. Phys. B 529 (1998) 424 [Erratum ibid. B 803 (2008) 234] [hep-ph/9801375] [INSPIRE].
  31. [31]
    M. Czakon, D. Heymes and A. Mitov, Dynamical scales for multi-TeV top-pair production at the LHC, JHEP 04 (2017) 071 [arXiv:1606.03350] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    M. Czakon and A. Mitov, Top++: A Program for the Calculation of the Top-Pair Cross-Section at Hadron Colliders, Comput. Phys. Commun. 185 (2014) 2930 [arXiv:1112.5675] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    P. Bärnreuther, M. Czakon and A. Mitov, Percent Level Precision Physics at the Tevatron: First Genuine NNLO QCD Corrections to \( q\overline{q}\to t\overline{t}+X \), Phys. Rev. Lett. 109 (2012) 132001 [arXiv:1204.5201] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    M. Czakon, P. Fiedler and A. Mitov, Total Top-Quark Pair-Production Cross Section at Hadron Colliders Through \( \mathcal{O}\left({\alpha}_s^4\right) \), Phys. Rev. Lett. 110 (2013) 252004 [arXiv:1303.6254] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    G. Bevilacqua and M. Worek, On the ratio of ttbb and ttjj cross sections at the CERN Large Hadron Collider, JHEP 07 (2014) 135 [arXiv:1403.2046] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    R. Frederix and F. Maltoni, Top pair invariant mass distribution: A Window on new physics, JHEP 01 (2009) 047 [arXiv:0712.2355] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    W. Bernreuther and Z.-G. Si, Distributions and correlations for top quark pair production and decay at the Tevatron and LHC., Nucl. Phys. B 837 (2010) 90 [arXiv:1003.3926] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  38. [38]
    W. Bernreuther and Z.-G. Si, Top quark spin correlations and polarization at the LHC: standard model predictions and effects of anomalous top chromo moments, Phys. Lett. B 725 (2013) 115 [Erratum ibid. B 744 (2015) 413] [arXiv:1305.2066] [INSPIRE].
  39. [39]
    G. Cacciapaglia, H. Cai, A. Deandrea, T. Flacke, S.J. Lee and A. Parolini, Composite scalars at the LHC: the Higgs, the Sextet and the Octet, JHEP 11 (2015) 201 [arXiv:1507.02283] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    R.M. Godbole, G. Mendiratta and S. Rindani, Looking for bSM physics using top-quark polarization and decay-lepton kinematic asymmetries, Phys. Rev. D 92 (2015) 094013 [arXiv:1506.07486] [INSPIRE].ADSGoogle Scholar
  41. [41]
    K. Melnikov, M. Schulze and A. Scharf, QCD corrections to top quark pair production in association with a photon at hadron colliders, Phys. Rev. D 83 (2011) 074013 [arXiv:1102.1967] [INSPIRE].ADSGoogle Scholar
  42. [42]
    G. Heinrich et al., NLO and off-shell effects in top quark mass determinations, JHEP 07 (2018) 129 [arXiv:1709.08615] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    T. Ježo and P. Nason, On the Treatment of Resonances in Next-to-Leading Order Calculations Matched to a Parton Shower, JHEP 12 (2015) 065 [arXiv:1509.09071] [INSPIRE].ADSGoogle Scholar
  44. [44]
    T. Ježo, J.M. Lindert, P. Nason, C. Oleari and S. Pozzorini, An NLO+PS generator for \( t\overline{t} \) and Wt production and decay including non-resonant and interference effects, Eur. Phys. J. C 76 (2016) 691 [arXiv:1607.04538] [INSPIRE].ADSGoogle Scholar
  45. [45]
    A. Denner and M. Pellen, NLO electroweak corrections to off-shell top-antitop production with leptonic decays at the LHC, JHEP 08 (2016) 155 [arXiv:1607.05571] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    P.-F. Duan, Y. Zhang, Y. Wang, M. Song and G. Li, Electroweak corrections to top quark pair production in association with a hard photon at hadron colliders, Phys. Lett. B 766 (2017) 102 [arXiv:1612.00248] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    Z. Bern et al., Ntuples for NLO Events at Hadron Colliders, Comput. Phys. Commun. 185 (2014) 1443 [arXiv:1310.7439] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    J. Alwall et al., A Standard format for Les Houches event files, Comput. Phys. Commun. 176 (2007) 300 [hep-ph/0609017] [INSPIRE].
  49. [49]
    I. Antcheva et al., ROOT: A C++ framework for petabyte data storage, statistical analysis and visualization, Comput. Phys. Commun. 180 (2009) 2499 [arXiv:1508.07749] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • G. Bevilacqua
    • 1
  • H. B. Hartanto
    • 2
  • M. Kraus
    • 3
  • T. Weber
    • 4
  • M. Worek
    • 4
    Email author
  1. 1.MTA-DE Particle Physics Research GroupUniversity of DebrecenDebrecenHungary
  2. 2.Institute for Particle Physics Phenomenology, Department of PhysicsDurham UniversityDurhamU.K.
  3. 3.Institut für PhysikHumboldt-Universität zu BerlinBerlinGermany
  4. 4.Institute for Theoretical Particle Physics and CosmologyRWTH Aachen UniversityAachenGermany

Personalised recommendations