Advertisement

Journal of High Energy Physics

, 2019:187 | Cite as

Racetrack potentials and the de Sitter swampland conjectures

  • Jose J. Blanco-Pillado
  • Mikel A. Urkiola
  • Jeremy M. WachterEmail author
Open Access
Regular Article - Theoretical Physics
  • 17 Downloads

Abstract

We show that one can find de Sitter critical points (saddle points) in models of flux compactification of Type IIB String Theory without any uplifting terms and in the presence of several moduli. We demonstrate this by giving explicit examples following some of the ideas recently presented by Conlon in ref. [1], as well as more generic situations where one can violate the strong form of the de Sitter Swampland Conjecture. We stabilize the complex structure and the dilaton with fluxes, and we introduce a racetrack potential that fixes the Kähler moduli. The resultant potentials generically exhibit de Sitter critical points and satisfy several consistency requirements such as flux quantization, large internal volume, and weak coupling, as well as a form of the so-called Weak Gravity Conjecture. Furthermore, we compute the form of the potential around these de Sitter saddle points and comment on these results in connection to the refined and more recent version of the de Sitter Swampland Conjecture.

Keywords

Flux compactifications Superstring Vacua 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J.P. Conlon, The de Sitter swampland conjecture and supersymmetric AdS vacua, Int. J. Mod. Phys. A 33 (2018) 1850178 [arXiv:1808.05040] [INSPIRE].
  2. [2]
    G. Obied, H. Ooguri, L. Spodyneiko and C. Vafa, de Sitter Space and the Swampland, arXiv:1806.08362 [INSPIRE].
  3. [3]
    F. Denef, A. Hebecker and T. Wrase, de Sitter swampland conjecture and the Higgs potential, Phys. Rev. D 98 (2018) 086004 [arXiv:1807.06581] [INSPIRE].
  4. [4]
    K. Choi, D. Chway and C.S. Shin, The dS swampland conjecture with the electroweak symmetry and QCD chiral symmetry breaking, JHEP 11 (2018) 142 [arXiv:1809.01475] [INSPIRE].
  5. [5]
    H. Murayama, M. Yamazaki and T.T. Yanagida, Do We Live in the Swampland?, JHEP 12 (2018) 032 [arXiv:1809.00478] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    M.P. Hertzberg, S. Kachru, W. Taylor and M. Tegmark, Inflationary Constraints on Type IIA String Theory, JHEP 12 (2007) 095 [arXiv:0711.2512] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    U.H. Danielsson and T. Van Riet, What if string theory has no de Sitter vacua?, Int. J. Mod. Phys. D 27 (2018) 1830007 [arXiv:1804.01120] [INSPIRE].
  8. [8]
    A. Achúcarro and G.A. Palma, The string swampland constraints require multi-field inflation, arXiv:1807.04390 [INSPIRE].
  9. [9]
    K. Dasgupta, M. Emelin, E. McDonough and R. Tatar, Quantum Corrections and the de Sitter Swampland Conjecture, arXiv:1808.07498 [INSPIRE].
  10. [10]
    M. Cicoli, S. De Alwis, A. Maharana, F. Muia and F. Quevedo, de Sitter vs Quintessence in String Theory, Fortsch. Phys. 2018 (2018) 1800079 [arXiv:1808.08967] [INSPIRE].
  11. [11]
    Y. Akrami, R. Kallosh, A. Linde and V. Vardanyan, The landscape, the swampland and the era of precision cosmology, Fortsch. Phys. 2018 (2018) 1800075 [arXiv:1808.09440] [INSPIRE].Google Scholar
  12. [12]
    R. Kallosh and T. Wrase, dS Supergravity from 10d, Fortsch. Phys. 2018 (2018) 1800071 [arXiv:1808.09427] [INSPIRE].Google Scholar
  13. [13]
    U. Danielsson, The quantum swampland, arXiv:1809.04512 [INSPIRE].
  14. [14]
    J. Moritz, A. Retolaza and A. Westphal, Toward de Sitter space from ten dimensions, Phys. Rev. D 97 (2018) 046010 [arXiv:1707.08678] [INSPIRE].
  15. [15]
    J. Moritz, A. Retolaza and A. Westphal, On uplifts by warped anti-D3-branes, arXiv:1809.06618 [INSPIRE].
  16. [16]
    R. Kallosh, A. Linde, E. McDonough and M. Scalisi, 4d models of dS uplift in KKLT, arXiv:1809.09018 [INSPIRE].
  17. [17]
    J. Blabäck, U. Danielsson and G. Dibitetto, A new light on the darkest corner of the landscape, arXiv:1810.11365 [INSPIRE].
  18. [18]
    J.J. Heckman, C. Lawrie, L. Lin and G. Zoccarato, F-theory and Dark Energy, arXiv:1811.01959 [INSPIRE].
  19. [19]
    L. Heisenberg, M. Bartelmann, R. Brandenberger and A. Refregier, Dark Energy in the Swampland, Phys. Rev. D 98 (2018) 123502 [arXiv:1808.02877] [INSPIRE].
  20. [20]
    E. Ó. Colgáin, M.H. P.M. Van Putten and H. Yavartanoo, Observational consequences of H 0 tension in de Sitter Swampland, arXiv:1807.07451 [INSPIRE].
  21. [21]
    A. Ashoorioon, Rescuing Single Field Inflation from the Swampland, arXiv:1810.04001 [INSPIRE].
  22. [22]
    D. Andriot, New constraints on classical de Sitter: flirting with the swampland, arXiv:1807.09698 [INSPIRE].
  23. [23]
    D. Andriot, On the de Sitter swampland criterion, Phys. Lett. B 785 (2018) 570 [arXiv:1806.10999] [INSPIRE].
  24. [24]
    S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, de Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [INSPIRE].
  25. [25]
    V. Balasubramanian, P. Berglund, J.P. Conlon and F. Quevedo, Systematics of moduli stabilisation in Calabi-Yau flux compactifications, JHEP 03 (2005) 007 [hep-th/0502058] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    J.P. Conlon, F. Quevedo and K. Suruliz, Large-volume flux compactifications: Moduli spectrum and D3/D7 soft supersymmetry breaking, JHEP 08 (2005) 007 [hep-th/0505076] [INSPIRE].
  27. [27]
    M. Cicoli, J.P. Conlon and F. Quevedo, General Analysis of LARGE Volume Scenarios with String Loop Moduli Stabilisation, JHEP 10 (2008) 105 [arXiv:0805.1029] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    I. Bena, M. Graña, S. Kuperstein and S. Massai, Giant Tachyons in the Landscape, JHEP 02 (2015) 146 [arXiv:1410.7776] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    I. Bena, A. Buchel and O.J.C. Dias, Horizons cannot save the Landscape, Phys. Rev. D 87 (2013) 063012 [arXiv:1212.5162] [INSPIRE].
  30. [30]
    U.H. Danielsson and T. Van Riet, Fatal attraction: more on decaying anti-branes, JHEP 03 (2015) 087 [arXiv:1410.8476] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    F.F. Gautason, D. Junghans and M. Zagermann, Cosmological Constant, Near Brane Behavior and Singularities, JHEP 09 (2013) 123 [arXiv:1301.5647] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    J. Polchinski, Brane/antibrane dynamics and KKLT stability, arXiv:1509.05710 [INSPIRE].
  33. [33]
    Y. Olguin-Trejo, S.L. Parameswaran, G. Tasinato and I. Zavala, Runaway Quintessence, Out of the Swampland, arXiv:1810.08634 [INSPIRE].
  34. [34]
    J. Moritz and T. Van Riet, Racing through the swampland: de Sitter uplift vs weak gravity, JHEP 09 (2018) 099 [arXiv:1805.00944] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    N. Arkani-Hamed, L. Motl, A. Nicolis and C. Vafa, The String landscape, black holes and gravity as the weakest force, JHEP 06 (2007) 060 [hep-th/0601001] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    H. Ooguri, E. Palti, G. Shiu and C. Vafa, Distance and de Sitter Conjectures on the Swampland, Phys. Lett. B 788 (2019) 180 [arXiv:1810.05506] [INSPIRE].
  37. [37]
    G. Dvali and C. Gomez, On Exclusion of Positive Cosmological Constant, arXiv:1806.10877 [INSPIRE].
  38. [38]
    G. Dvali, C. Gomez and S. Zell, Quantum Breaking Bound on de Sitter and Swampland, arXiv:1810.11002 [INSPIRE].
  39. [39]
    S.K. Garg and C. Krishnan, Bounds on Slow Roll and the de Sitter Swampland, arXiv:1807.05193 [INSPIRE].
  40. [40]
    S.K. Garg, C. Krishnan and M. Zaid, Bounds on Slow Roll at the Boundary of the Landscape, arXiv:1810.09406 [INSPIRE].
  41. [41]
    A. Hebecker and T. Wrase, The asymptotic dS Swampland Conjecture — a simplified derivation and a potential loophole, Fortsch. Phys. 2018 (2018) 1800097 [arXiv:1810.08182] [INSPIRE].Google Scholar
  42. [42]
    J. Louis, M. Rummel, R. Valandro and A. Westphal, Building an explicit de Sitter, JHEP 10 (2012) 163 [arXiv:1208.3208] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  43. [43]
    J.J. Blanco-Pillado et al., Inflating in a better racetrack, JHEP 09 (2006) 002 [hep-th/0603129] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  44. [44]
    S. Gukov, C. Vafa and E. Witten, CFT’s from Calabi-Yau four folds, Nucl. Phys. B 584 (2000) 69 [Erratum ibid. B 608 (2001) 477] [hep-th/9906070] [INSPIRE].
  45. [45]
    F. Denef, M.R. Douglas and B. Florea, Building a better racetrack, JHEP 06 (2004) 034 [hep-th/0404257] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  46. [46]
    G. Curio and V. Spillner, On the modified KKLT procedure: A Case study for the P(11169) [18] model, Int. J. Mod. Phys. A 22 (2007) 3463 [hep-th/0606047] [INSPIRE].
  47. [47]
    J.J. Blanco-Pillado, M. Gomez-Reino and K. Metallinos, Accidental Inflation in the Landscape, JCAP 02 (2013) 034 [arXiv:1209.0796] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    K. Metallinos, Numerical Explorations of the String Theory Landscape, Ph.D. Thesis, Tufts University, Medford U.S.A. (2013).Google Scholar
  49. [49]
    S. Sethi, Supersymmetry Breaking by Fluxes, JHEP 10 (2018) 022 [arXiv:1709.03554] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  50. [50]
    S. Kachru and S.P. Trivedi, A comment on effective field theories of flux vacua, arXiv:1808.08971 [INSPIRE].
  51. [51]
    R. Kallosh and A.D. Linde, Landscape, the scale of SUSY breaking and inflation, JHEP 12 (2004) 004 [hep-th/0411011] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  52. [52]
    J.J. Blanco-Pillado, R. Kallosh and A.D. Linde, Supersymmetry and stability of flux vacua, JHEP 05 (2006) 053 [hep-th/0511042] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  53. [53]
    M.R. Douglas, Statistical analysis of the supersymmetry breaking scale, hep-th/0405279 [INSPIRE].
  54. [54]
    E.J. Copeland, A.R. Liddle, D.H. Lyth, E.D. Stewart and D. Wands, False vacuum inflation with Einstein gravity, Phys. Rev. D 49 (1994) 6410 [astro-ph/9401011] [INSPIRE].
  55. [55]
    M. Badziak and M. Olechowski, Volume modulus inflation and a low scale of SUSY breaking, JCAP 07 (2008) 021 [arXiv:0802.1014] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    L. Covi, M. Gomez-Reino, C. Gross, J. Louis, G.A. Palma and C.A. Scrucca, Constraints on modular inflation in supergravity and string theory, JHEP 08 (2008) 055 [arXiv:0805.3290] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  57. [57]
    J.J. Blanco-Pillado et al., Racetrack inflation, JHEP 11 (2004) 063 [hep-th/0406230] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  58. [58]
    R. Kallosh, A. Linde, B. Vercnocke and T. Wrase, Analytic Classes of Metastable de Sitter Vacua, JHEP 10 (2014) 011 [arXiv:1406.4866] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of Theoretical PhysicsUniversity of the Basque Country (UPV/EHU)BilbaoSpain
  2. 2.IKERBASQUE, Basque Foundation for ScienceBilbaoSpain

Personalised recommendations