# Conformally soft photons and gravitons

- 19 Downloads

## Abstract

The four-dimensional *S*-matrix is reconsidered as a correlator on the celestial sphere at null infinity. Asymptotic particle states can be characterized by the point at which they enter or exit the celestial sphere as well as their SL(2, ℂ) Lorentz quantum numbers: namely their conformal scaling dimension and spin \( h\pm \overline{h} \) instead of the energy and momentum. This characterization precludes the notion of a soft particle whose energy is taken to zero. We propose it should be replaced by the notion of a *conformally soft* particle with *h* = 0 or \( \overline{h} \) = 0. For photons we explicitly construct conformally soft SL(2, ℂ) currents with dimensions (1, 0) and identify them with the generator of a U(1) Kac-Moody symmetry on the celestial sphere. For gravity the generator of celestial conformal symmetry is constructed from a (2, 0) SL(2, ℂ) primary wavefunction. Interestingly, BMS supertranslations are generated by a spin-one weight (\( \frac{3}{2} \), \( \frac{1}{2} \)) operator, which nevertheless shares holomorphic characteristics of a conformally soft operator. This is because the right hand side of its OPE with a weight (*h*, \( \overline{h} \)) operator \( {\mathcal{O}}_{h,\overline{h}} \) involves the shifted operator \( {\mathcal{O}}_{h+\frac{1}{2},\overline{h}+\frac{1}{2}} \). This OPE relation looks quite unusual from the celestial CFT_{2} perspective but is equivalent to the leading soft graviton theorem and may usefully constrain celestial correlators in quantum gravity.

## Keywords

Gauge Symmetry Space-Time Symmetries AdS-CFT Correspondence Conformal Field Theory## Notes

### **Open Access**

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

## References

- [1]D.R. Yennie, S.C. Frautschi and H. Suura,
*The infrared divergence phenomena and high-energy processes*,*Annals Phys.***13**(1961) 379 [INSPIRE].ADSCrossRefGoogle Scholar - [2]S. Weinberg,
*Infrared photons and gravitons*,*Phys. Rev.***140**(1965) B516 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [3]J. de Boer and S.N. Solodukhin,
*A Holographic reduction of Minkowski space-time*,*Nucl. Phys.***B 665**(2003) 545 [hep-th/0303006] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar - [4]A. Strominger,
*Asymptotic Symmetries of Yang-Mills Theory*,*JHEP***07**(2014) 151 [arXiv:1308.0589] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [5]T. He, P. Mitra and A. Strominger, 2
*D Kac-Moody Symmetry of 4D Yang-Mills Theory*,*JHEP***10**(2016) 137 [arXiv:1503.02663] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [6]S. Pasterski, S.-H. Shao and A. Strominger,
*Flat Space Amplitudes and Conformal Symmetry of the Celestial Sphere*,*Phys. Rev.***D 96**(2017) 065026 [arXiv:1701.00049] [INSPIRE].ADSMathSciNetGoogle Scholar - [7]C. Cheung, A. de la Fuente and R. Sundrum, 4
*D scattering amplitudes and asymptotic symmetries from*2*D CFT*,*JHEP***01**(2017) 112 [arXiv:1609.00732] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [8]A. Strominger,
*Lectures on the Infrared Structure of Gravity and Gauge Theory*, Princeton University Press (2018) [arXiv:1703.05448] [INSPIRE]. - [9]S. Pasterski and S.-H. Shao,
*Conformal basis for flat space amplitudes*,*Phys. Rev.***D 96**(2017) 065022 [arXiv:1705.01027] [INSPIRE].ADSMathSciNetGoogle Scholar - [10]S. Pasterski, S.-H. Shao and A. Strominger,
*Gluon Amplitudes as 2d Conformal Correlators*,*Phys. Rev.***D 96**(2017) 085006 [arXiv:1706.03917] [INSPIRE].ADSMathSciNetGoogle Scholar - [11]A. Schreiber, A. Volovich and M. Zlotnikov,
*Tree-level gluon amplitudes on the celestial sphere*,*Phys. Lett.***B 781**(2018) 349 [arXiv:1711.08435] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar - [12]H.T. Lam and S.-H. Shao,
*Conformal Basis, Optical Theorem and the Bulk Point Singularity*,*Phys. Rev.***D 98**(2018) 025020 [arXiv:1711.06138] [INSPIRE].ADSGoogle Scholar - [13]N. Banerjee, S. Banerjee, S. Atul Bhatkar and S. Jain,
*Conformal Structure of Massless Scalar Amplitudes Beyond Tree level*,*JHEP***04**(2018) 039 [arXiv:1711.06690] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [14]S. Stieberger and T.R. Taylor,
*Strings on Celestial Sphere*,*Nucl. Phys.***B 935**(2018) 388 [arXiv:1806.05688] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [15]A. Strominger,
*On BMS Invariance of Gravitational Scattering*,*JHEP***07**(2014) 152 [arXiv:1312.2229] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar - [16]G. Barnich and C. Troessaert,
*Comments on holographic current algebras and asymptotically flat four dimensional spacetimes at null infinity*,*JHEP***11**(2013) 003 [arXiv:1309.0794] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [17]D. Kapec, P. Mitra, A.-M. Raclariu and A. Strominger, 2
*D Stress Tensor for*4*D Gravity*,*Phys. Rev. Lett.***119**(2017) 121601 [arXiv:1609.00282] [INSPIRE].ADSCrossRefGoogle Scholar - [18]
- [19]
- [20]T. He, P. Mitra, A.P. Porfyriadis and A. Strominger,
*New Symmetries of Massless QED*,*JHEP***10**(2014) 112 [arXiv:1407.3789] [INSPIRE].ADSCrossRefGoogle Scholar - [21]D. Grumiller and N. Johansson,
*Instability in cosmological topologically massive gravity at the chiral point*,*JHEP***07**(2008) 134 [arXiv:0805.2610] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar - [22]A. Nande, M. Pate and A. Strominger,
*Soft Factorization in QED from 2D Kac-Moody Symmetry*,*JHEP***02**(2018) 079 [arXiv:1705.00608] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [23]S.W. Hawking, M.J. Perry and A. Strominger,
*Superrotation Charge and Supertranslation Hair on Black Holes*,*JHEP***05**(2017) 161 [arXiv:1611.09175] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [24]A. Ashtekar,
*Asymptotic Quantization: Based on 1984 Naples Lectures*, (1987) [INSPIRE]. - [25]C. Crnkovic and E. Witten,
*Covariant description of canonical formalism in geometrical theories*, in*Three Hundred Years of Gravitation*, pp. 676–684, S.W. Hawking and W. Israel eds. (1987) [INSPIRE]. - [26]J. Lee and R.M. Wald,
*Local symmetries and constraints*,*J. Math. Phys.***31**(1990) 725 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [27]R.M. Wald and A. Zoupas,
*A General definition of ‘conserved quantities’ in general relativity and other theories of gravity*,*Phys. Rev.***D 61**(2000) 084027 [gr-qc/9911095] [INSPIRE]. - [28]T. He, V. Lysov, P. Mitra and A. Strominger,
*BMS supertranslations and Weinberg’s soft graviton theorem*,*JHEP***05**(2015) 151 [arXiv:1401.7026] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [29]F.A. Dolan and H. Osborn,
*Conformal Partial Waves: Further Mathematical Results*, arXiv:1108.6194 [INSPIRE]. - [30]D. Kapec and P. Mitra,
*A d-Dimensional Stress Tensor for Mink*_{d+2}*Gravity*,*JHEP***05**(2018) 186 [arXiv:1711.04371] [INSPIRE]. - [31]D. Simmons-Duffin,
*Projectors, Shadows and Conformal Blocks*,*JHEP***04**(2014) 146 [arXiv:1204.3894] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [32]S. Ferrara and G. Parisi,
*Conformal covariant correlation functions*,*Nucl. Phys.***B 42**(1972) 281 [INSPIRE].ADSCrossRefGoogle Scholar - [33]S. Ferrara, A.F. Grillo, G. Parisi and R. Gatto,
*The shadow operator formalism for conformal algebra. vacuum expectation values and operator products*,*Lett. Nuovo Cim.***4S2**(1972) 115 [INSPIRE]. - [34]S. Ferrara, A.F. Grillo and G. Parisi,
*Nonequivalence between conformal covariant Wilson expansion in euclidean and Minkowski space*,*Lett. Nuovo Cim.***5S2**(1972) 147 [INSPIRE]. - [35]S. Ferrara, A.F. Grillo, G. Parisi and R. Gatto,
*Covariant expansion of the conformal four-point function*,*Nucl. Phys.***B 49**(1972) 77 [*Erratum ibid.***B 53**(1973) 643] [INSPIRE]. - [36]M.S. Costa, V. Gonçalves and J. Penedones,
*Spinning AdS Propagators*,*JHEP***09**(2014) 064 [arXiv:1404.5625] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [37]R. Sachs,
*Asymptotic symmetries in gravitational theory*,*Phys. Rev.***128**(1962) 2851 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [38]D. Kutasov and N. Seiberg,
*More comments on string theory on AdS*_{3},*JHEP***04**(1999) 008 [hep-th/9903219] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar