Advertisement

Journal of High Energy Physics

, 2019:184 | Cite as

Conformally soft photons and gravitons

  • Laura DonnayEmail author
  • Andrea Puhm
  • Andrew Strominger
Open Access
Regular Article - Theoretical Physics
  • 19 Downloads

Abstract

The four-dimensional S-matrix is reconsidered as a correlator on the celestial sphere at null infinity. Asymptotic particle states can be characterized by the point at which they enter or exit the celestial sphere as well as their SL(2, ℂ) Lorentz quantum numbers: namely their conformal scaling dimension and spin \( h\pm \overline{h} \) instead of the energy and momentum. This characterization precludes the notion of a soft particle whose energy is taken to zero. We propose it should be replaced by the notion of a conformally soft particle with h = 0 or \( \overline{h} \) = 0. For photons we explicitly construct conformally soft SL(2, ℂ) currents with dimensions (1, 0) and identify them with the generator of a U(1) Kac-Moody symmetry on the celestial sphere. For gravity the generator of celestial conformal symmetry is constructed from a (2, 0) SL(2, ℂ) primary wavefunction. Interestingly, BMS supertranslations are generated by a spin-one weight (\( \frac{3}{2} \), \( \frac{1}{2} \)) operator, which nevertheless shares holomorphic characteristics of a conformally soft operator. This is because the right hand side of its OPE with a weight (h, \( \overline{h} \)) operator \( {\mathcal{O}}_{h,\overline{h}} \) involves the shifted operator \( {\mathcal{O}}_{h+\frac{1}{2},\overline{h}+\frac{1}{2}} \). This OPE relation looks quite unusual from the celestial CFT2 perspective but is equivalent to the leading soft graviton theorem and may usefully constrain celestial correlators in quantum gravity.

Keywords

Gauge Symmetry Space-Time Symmetries AdS-CFT Correspondence Conformal Field Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    D.R. Yennie, S.C. Frautschi and H. Suura, The infrared divergence phenomena and high-energy processes, Annals Phys. 13 (1961) 379 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    S. Weinberg, Infrared photons and gravitons, Phys. Rev. 140 (1965) B516 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    J. de Boer and S.N. Solodukhin, A Holographic reduction of Minkowski space-time, Nucl. Phys. B 665 (2003) 545 [hep-th/0303006] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  4. [4]
    A. Strominger, Asymptotic Symmetries of Yang-Mills Theory, JHEP 07 (2014) 151 [arXiv:1308.0589] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    T. He, P. Mitra and A. Strominger, 2D Kac-Moody Symmetry of 4D Yang-Mills Theory, JHEP 10 (2016) 137 [arXiv:1503.02663] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    S. Pasterski, S.-H. Shao and A. Strominger, Flat Space Amplitudes and Conformal Symmetry of the Celestial Sphere, Phys. Rev. D 96 (2017) 065026 [arXiv:1701.00049] [INSPIRE].ADSMathSciNetGoogle Scholar
  7. [7]
    C. Cheung, A. de la Fuente and R. Sundrum, 4D scattering amplitudes and asymptotic symmetries from 2D CFT, JHEP 01 (2017) 112 [arXiv:1609.00732] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    A. Strominger, Lectures on the Infrared Structure of Gravity and Gauge Theory, Princeton University Press (2018) [arXiv:1703.05448] [INSPIRE].
  9. [9]
    S. Pasterski and S.-H. Shao, Conformal basis for flat space amplitudes, Phys. Rev. D 96 (2017) 065022 [arXiv:1705.01027] [INSPIRE].ADSMathSciNetGoogle Scholar
  10. [10]
    S. Pasterski, S.-H. Shao and A. Strominger, Gluon Amplitudes as 2d Conformal Correlators, Phys. Rev. D 96 (2017) 085006 [arXiv:1706.03917] [INSPIRE].ADSMathSciNetGoogle Scholar
  11. [11]
    A. Schreiber, A. Volovich and M. Zlotnikov, Tree-level gluon amplitudes on the celestial sphere, Phys. Lett. B 781 (2018) 349 [arXiv:1711.08435] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  12. [12]
    H.T. Lam and S.-H. Shao, Conformal Basis, Optical Theorem and the Bulk Point Singularity, Phys. Rev. D 98 (2018) 025020 [arXiv:1711.06138] [INSPIRE].ADSGoogle Scholar
  13. [13]
    N. Banerjee, S. Banerjee, S. Atul Bhatkar and S. Jain, Conformal Structure of Massless Scalar Amplitudes Beyond Tree level, JHEP 04 (2018) 039 [arXiv:1711.06690] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    S. Stieberger and T.R. Taylor, Strings on Celestial Sphere, Nucl. Phys. B 935 (2018) 388 [arXiv:1806.05688] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    A. Strominger, On BMS Invariance of Gravitational Scattering, JHEP 07 (2014) 152 [arXiv:1312.2229] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  16. [16]
    G. Barnich and C. Troessaert, Comments on holographic current algebras and asymptotically flat four dimensional spacetimes at null infinity, JHEP 11 (2013) 003 [arXiv:1309.0794] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    D. Kapec, P. Mitra, A.-M. Raclariu and A. Strominger, 2D Stress Tensor for 4D Gravity, Phys. Rev. Lett. 119 (2017) 121601 [arXiv:1609.00282] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    F. Cachazo and A. Strominger, Evidence for a New Soft Graviton Theorem, arXiv:1404.4091 [INSPIRE].
  19. [19]
    B. Oblak, From the Lorentz Group to the Celestial Sphere, 2015, arXiv:1508.00920 [INSPIRE].
  20. [20]
    T. He, P. Mitra, A.P. Porfyriadis and A. Strominger, New Symmetries of Massless QED, JHEP 10 (2014) 112 [arXiv:1407.3789] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    D. Grumiller and N. Johansson, Instability in cosmological topologically massive gravity at the chiral point, JHEP 07 (2008) 134 [arXiv:0805.2610] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  22. [22]
    A. Nande, M. Pate and A. Strominger, Soft Factorization in QED from 2D Kac-Moody Symmetry, JHEP 02 (2018) 079 [arXiv:1705.00608] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    S.W. Hawking, M.J. Perry and A. Strominger, Superrotation Charge and Supertranslation Hair on Black Holes, JHEP 05 (2017) 161 [arXiv:1611.09175] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    A. Ashtekar, Asymptotic Quantization: Based on 1984 Naples Lectures, (1987) [INSPIRE].
  25. [25]
    C. Crnkovic and E. Witten, Covariant description of canonical formalism in geometrical theories, in Three Hundred Years of Gravitation, pp. 676–684, S.W. Hawking and W. Israel eds. (1987) [INSPIRE].
  26. [26]
    J. Lee and R.M. Wald, Local symmetries and constraints, J. Math. Phys. 31 (1990) 725 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    R.M. Wald and A. Zoupas, A General definition of ‘conserved quantities’ in general relativity and other theories of gravity, Phys. Rev. D 61 (2000) 084027 [gr-qc/9911095] [INSPIRE].
  28. [28]
    T. He, V. Lysov, P. Mitra and A. Strominger, BMS supertranslations and Weinberg’s soft graviton theorem, JHEP 05 (2015) 151 [arXiv:1401.7026] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    F.A. Dolan and H. Osborn, Conformal Partial Waves: Further Mathematical Results, arXiv:1108.6194 [INSPIRE].
  30. [30]
    D. Kapec and P. Mitra, A d-Dimensional Stress Tensor for Mink d+2 Gravity, JHEP 05 (2018) 186 [arXiv:1711.04371] [INSPIRE].
  31. [31]
    D. Simmons-Duffin, Projectors, Shadows and Conformal Blocks, JHEP 04 (2014) 146 [arXiv:1204.3894] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    S. Ferrara and G. Parisi, Conformal covariant correlation functions, Nucl. Phys. B 42 (1972) 281 [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    S. Ferrara, A.F. Grillo, G. Parisi and R. Gatto, The shadow operator formalism for conformal algebra. vacuum expectation values and operator products, Lett. Nuovo Cim. 4S2 (1972) 115 [INSPIRE].
  34. [34]
    S. Ferrara, A.F. Grillo and G. Parisi, Nonequivalence between conformal covariant Wilson expansion in euclidean and Minkowski space, Lett. Nuovo Cim. 5S2 (1972) 147 [INSPIRE].
  35. [35]
    S. Ferrara, A.F. Grillo, G. Parisi and R. Gatto, Covariant expansion of the conformal four-point function, Nucl. Phys. B 49 (1972) 77 [Erratum ibid. B 53 (1973) 643] [INSPIRE].
  36. [36]
    M.S. Costa, V. Gonçalves and J. Penedones, Spinning AdS Propagators, JHEP 09 (2014) 064 [arXiv:1404.5625] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    R. Sachs, Asymptotic symmetries in gravitational theory, Phys. Rev. 128 (1962) 2851 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    D. Kutasov and N. Seiberg, More comments on string theory on AdS 3, JHEP 04 (1999) 008 [hep-th/9903219] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Center for the Fundamental Laws of NatureHarvard UniversityCambridgeU.S.A.
  2. 2.Black Hole InitiativeHarvard UniversityCambridgeU.S.A.
  3. 3.Centre de Physique Théorique, École Polytechnique, CNRSPalaiseauFrance

Personalised recommendations