Journal of High Energy Physics

, 2019:179 | Cite as

Amplitudes from anomalous superconformal symmetry

  • D. ChicherinEmail author
  • J. M. Henn
  • E. Sokatchev
Open Access
Regular Article - Theoretical Physics


We initiate a systematic study of the consequences of (super)conformal symmetry of massless scattering amplitudes. The classical symmetry is potentially broken at the quantum level by infrared and ultraviolet effects. We study its manifestations on the finite hard part of the scattering process. The conformal Ward identities in momentum space are second-order differential equations, difficult to analyze. We prefer to study superconformal symmetry whose generators are first-order in the momenta. Working in a massless \( \mathcal{N} \) = 1 supersymmetric Wess-Zumino model, we derive on-shell superconformal Ward identities. They contain an anomaly due to collinear regions of loop momenta. It is given by an integral with one loop less than the original graph, with an extra integral over a collinear splitting parameter. We discuss the relation to the holomorphic anomaly that was previously studied in tree-level amplitudes and at the level of unitarity cuts. We derive and solve Ward identities for various scattering processes in the model. We classify the on-shell superamplitudes according to their Grassmann degree, in close analogy with the helicity classification of gluon amplitudes. We focus on MHV-like and NMHV-like amplitudes with up to six external particles, at one and two loops. Interestingly, the superconformal generator acting on the bosonic part of the amplitudes is Witten’s twistor collinearity operator. We find that the first-order differential equations, together with physically motivated boundary conditions, uniquely fix the answer. All the cases considered give rise to uniform weight functions. Our most interesting example is a five-point non-planar hexa-box integral with an off-shell leg. It gives first indications on the function space needed for Higgs plus two jets production at next-to-next-to leading order.


Scattering Amplitudes Anomalies in Field and String Theories Conformal Field Theory Superspaces 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    V.M. Braun, G.P. Korchemsky and D. Mueller, The uses of conformal symmetry in QCD, Prog. Part. Nucl. Phys. 51 (2003) 311 [hep-ph/0306057] [INSPIRE].
  2. [2]
    J.R. Andersen et al., Les Houches 2017: Physics at TeV Colliders Standard Model Working Group Report, in 10th Les Houches Workshop on Physics at TeV Colliders (PhysTeV 2017) Les Houches, France, June 5–23, 2017, [arXiv:1803.07977] [INSPIRE].
  3. [3]
    D. Chicherin, J.M. Henn and E. Sokatchev, Scattering Amplitudes from Superconformal Ward Identities, Phys. Rev. Lett. 121 (2018) 021602 [arXiv:1804.03571] [INSPIRE].CrossRefGoogle Scholar
  4. [4]
    J.C. Collins, D.E. Soper and G.F. Sterman, Factorization of Hard Processes in QCD, Adv. Ser. Direct. High Energy Phys. 5 (1989) 1 [hep-ph/0409313] [INSPIRE].
  5. [5]
    S. Catani, The singular behavior of QCD amplitudes at two loop order, Phys. Lett. B 427 (1998) 161 [hep-ph/9802439] [INSPIRE].
  6. [6]
    S.M. Aybat, L.J. Dixon and G.F. Sterman, The two-loop soft anomalous dimension matrix and resummation at next-to-next-to leading pole, Phys. Rev. D 74 (2006) 074004 [hep-ph/0607309] [INSPIRE].
  7. [7]
    L.J. Dixon, L. Magnea and G.F. Sterman, Universal structure of subleading infrared poles in gauge theory amplitudes, JHEP 08 (2008) 022 [arXiv:0805.3515] [INSPIRE].CrossRefGoogle Scholar
  8. [8]
    T. Becher and M. Neubert, Infrared singularities of scattering amplitudes in perturbative QCD, Phys. Rev. Lett. 102 (2009) 162001 [Erratum ibid. 111 (2013) 199905] [arXiv:0901.0722] [INSPIRE].
  9. [9]
    Ø. Almelid, C. Duhr and E. Gardi, Three-loop corrections to the soft anomalous dimension in multileg scattering, Phys. Rev. Lett. 117 (2016) 172002 [arXiv:1507.00047] [INSPIRE].CrossRefGoogle Scholar
  10. [10]
    J. Wess and B. Zumino, A Lagrangian Model Invariant Under Supergauge Transformations, Phys. Lett. 49B (1974) 52 [INSPIRE].CrossRefGoogle Scholar
  11. [11]
    S. Ferrara, J. Iliopoulos and B. Zumino, Supergauge Invariance and the Gell-Mann-Low Eigenvalue, Nucl. Phys. B 77 (1974) 413 [INSPIRE].Google Scholar
  12. [12]
    D. Chicherin and E. Sokatchev, Conformal anomaly of generalized form factors and finite loop integrals, JHEP 04 (2018) 082 [arXiv:1709.03511] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    T. Bargheer, N. Beisert, W. Galleas, F. Loebbert and T. McLoughlin, Exacting N = 4 Superconformal Symmetry, JHEP 11 (2009) 056 [arXiv:0905.3738] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  14. [14]
    G.P. Korchemsky and E. Sokatchev, Symmetries and analytic properties of scattering amplitudes in N = 4 SYM theory, Nucl. Phys. B 832 (2010) 1 [arXiv:0906.1737] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    N. Beisert, J. Henn, T. McLoughlin and J. Plefka, One-Loop Superconformal and Yangian Symmetries of Scattering Amplitudes in N = 4 Super Yang-Mills, JHEP 04 (2010) 085 [arXiv:1002.1733] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    F. Cachazo, P. Svrček and E. Witten, Gauge theory amplitudes in twistor space and holomorphic anomaly, JHEP 10 (2004) 077 [hep-th/0409245] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  17. [17]
    S.J. Bidder, N.E.J. Bjerrum-Bohr, L.J. Dixon and D.C. Dunbar, N = 1 supersymmetric one-loop amplitudes and the holomorphic anomaly of unitarity cuts, Phys. Lett. B 606 (2005) 189 [hep-th/0410296] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    S. Caron-Huot, Superconformal symmetry and two-loop amplitudes in planar N = 4 super Yang-Mills, JHEP 12 (2011) 066 [arXiv:1105.5606] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    M. Bullimore and D. Skinner, Descent Equations for Superamplitudes, arXiv:1112.1056 [INSPIRE].
  20. [20]
    L.J. Dixon, J.M. Drummond and J.M. Henn, Bootstrapping the three-loop hexagon, JHEP 11 (2011) 023 [arXiv:1108.4461] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    S. Caron-Huot, L.J. Dixon, A. McLeod and M. von Hippel, Bootstrapping a Five-Loop Amplitude Using Steinmann Relations, Phys. Rev. Lett. 117 (2016) 241601 [arXiv:1609.00669] [INSPIRE].CrossRefGoogle Scholar
  22. [22]
    J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Dual superconformal symmetry of scattering amplitudes in N = 4 super-Yang-Mills theory, Nucl. Phys. B 828 (2010) 317 [arXiv:0807.1095] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Classical Polylogarithms for Amplitudes and Wilson Loops, Phys. Rev. Lett. 105 (2010) 151605 [arXiv:1006.5703] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  24. [24]
    C. Duhr, H. Gangl and J.R. Rhodes, From polygons and symbols to polylogarithmic functions, JHEP 10 (2012) 075 [arXiv:1110.0458] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    E. Witten, Perturbative gauge theory as a string theory in twistor space, Commun. Math. Phys. 252 (2004) 189 [hep-th/0312171] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo and J. Trnka, Local Integrals for Planar Scattering Amplitudes, JHEP 06 (2012) 125 [arXiv:1012.6032] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    D. Chicherin, J. Henn and V. Mitev, Bootstrapping pentagon functions, JHEP 05 (2018) 164 [arXiv:1712.09610] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  28. [28]
    T. Gehrmann, J.M. Henn and N.A. Lo Presti, Pentagon functions for massless planar scattering amplitudes, JHEP 10 (2018) 103 [arXiv:1807.09812] [INSPIRE].CrossRefzbMATHGoogle Scholar
  29. [29]
    S. Abreu, B. Page and M. Zeng, Differential equations from unitarity cuts: nonplanar hexa-box integrals, JHEP 01 (2019) 006 [arXiv:1807.11522] [INSPIRE].CrossRefGoogle Scholar
  30. [30]
    D. Chicherin, T. Gehrmann, J.M. Henn, N.A. Lo Presti, V. Mitev and P. Wasser, Analytic result for the nonplanar hexa-box integrals, arXiv:1809.06240 [INSPIRE].
  31. [31]
    H.A. Chawdhry, M.A. Lim and A. Mitov, Two-loop five-point massless QCD amplitudes within the IBP approach, arXiv:1805.09182 [INSPIRE].
  32. [32]
    J. Böhm, A. Georgoudis, K.J. Larsen, H. Schönemann and Y. Zhang, Complete integration-by-parts reductions of the non-planar hexagon-box via module intersections, JHEP 09 (2018) 024 [arXiv:1805.01873] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    S. Badger, C. Brønnum-Hansen, H.B. Hartanto and T. Peraro, First look at two-loop five-gluon scattering in QCD, Phys. Rev. Lett. 120 (2018) 092001 [arXiv:1712.02229] [INSPIRE].CrossRefGoogle Scholar
  34. [34]
    S. Abreu, F. Febres Cordero, H. Ita, B. Page and M. Zeng, Planar Two-Loop Five-Gluon Amplitudes from Numerical Unitarity, Phys. Rev. D 97 (2018) 116014 [arXiv:1712.03946] [INSPIRE].Google Scholar
  35. [35]
    S. Abreu, F. Febres Cordero, H. Ita, B. Page and V. Sotnikov, Planar Two-Loop Five-Parton Amplitudes from Numerical Unitarity, JHEP 11 (2018) 116 [arXiv:1809.09067] [INSPIRE].CrossRefGoogle Scholar
  36. [36]
    C.G. Papadopoulos, D. Tommasini and C. Wever, The Pentabox Master Integrals with the Simplified Differential Equations approach, JHEP 04 (2016) 078 [arXiv:1511.09404] [INSPIRE].Google Scholar
  37. [37]
    J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton University Press, Princeton, NJ, U.S.A., (1992).zbMATHGoogle Scholar
  38. [38]
    J.M. Drummond and J.M. Henn, All tree-level amplitudes in N = 4 SYM, JHEP 04 (2009) 018 [arXiv:0808.2475] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  39. [39]
    L.J. Dixon, J.M. Drummond and J.M. Henn, The one-loop six-dimensional hexagon integral and its relation to MHV amplitudes in N = 4 SYM, JHEP 06 (2011) 100 [arXiv:1104.2787] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    T. Gehrmann and E. Remiddi, Two loop master integrals for γ * → 3 jets: The planar topologies, Nucl. Phys. B 601 (2001) 248 [hep-ph/0008287] [INSPIRE].
  41. [41]
    S. Caron-Huot and S. He, Jumpstarting the All-Loop S-matrix of Planar N = 4 Super Yang-Mills, JHEP 07 (2012) 174 [arXiv:1112.1060] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    L.F. Alday, D. Gaiotto, J. Maldacena, A. Sever and P. Vieira, An Operator Product Expansion for Polygonal null Wilson Loops, JHEP 04 (2011) 088 [arXiv:1006.2788] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  43. [43]
    J.M. Henn, S. Moch and S.G. Naculich, Form factors and scattering amplitudes in N = 4 SYM in dimensional and massive regularizations, JHEP 12 (2011) 024 [arXiv:1109.5057] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    S. Weinzierl, Does one need the O(ϵ)- and O(ϵ 2)-terms of one-loop amplitudes in an NNLO calculation?, Phys. Rev. D 84 (2011) 074007 [arXiv:1107.5131] [INSPIRE].Google Scholar
  45. [45]
    A. Galperin, E. Ivanov, S. Kalitsyn, V. Ogievetsky and E. Sokatchev, Unconstrained N = 2 Matter, Yang-Mills and Supergravity Theories in Harmonic Superspace, Class. Quant. Grav. 1 (1984) 469 [Erratum ibid. 2 (1985) 127] [INSPIRE].
  46. [46]
    I.M. Gelfand and G.E. Shilov, Generalized functions. Vol. 1, Properties and operations, Academic Press, New York, NY, U.S.A., (1964).Google Scholar
  47. [47]
    J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Conformal Ward identities for Wilson loops and a test of the duality with gluon amplitudes, Nucl. Phys. B 826 (2010) 337 [arXiv:0712.1223] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  48. [48]
    N.I. Usyukina and A.I. Davydychev, An approach to the evaluation of three and four point ladder diagrams, Phys. Lett. B 298 (1993) 363 [INSPIRE].CrossRefGoogle Scholar
  49. [49]
    F. Cachazo, Holomorphic anomaly of unitarity cuts and one-loop gauge theory amplitudes, hep-th/0410077 [INSPIRE].
  50. [50]
    F. Cachazo, P. Svrček and E. Witten, MHV vertices and tree amplitudes in gauge theory, JHEP 09 (2004) 006 [hep-th/0403047] [INSPIRE].MathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Max-Planck-Institut für PhysikWerner-Heisenberg-InstitutMünchenGermany
  2. 2.LAPTh, Université Savoie Mont Blanc, CNRSAnnecy-le-VieuxFrance

Personalised recommendations