Journal of High Energy Physics

, 2019:175 | Cite as

Monodromy inflation and an emergent mechanism for stabilising the cosmological constant

  • Antonio PadillaEmail author
Open Access
Regular Article - Theoretical Physics


We show that a pair of field theory monodromies in which the shift symmetry is broken by small, well motivated deformations, naturally incorporates a mechanism for cancelling off radiative corrections to the cosmological constant. The lighter monodromy sector plays the role of inflation as well as providing a rigid degree of freedom that acts as a dynamical counterterm for the cosmological constant. The heavier monodromy sector includes a rigid dilaton that forces a global constraint on the system and the cancellation of vacuum energy loops occurs at low energies via the sequestering mechanism. This suggests that monodromy constructions in string theory could be adapted to incorporate mechanisms to stabilise the cosmological constant in their low energy descriptions.


Classical Theories of Gravity Effective Field Theories 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    A.D. Linde, Chaotic Inflation, Phys. Lett. B 129 (1983) 177 [INSPIRE].
  2. [2]
    K. Freese, J.A. Frieman and A.V. Olinto, Natural inflation with pseudo Nambu-Goldstone bosons, Phys. Rev. Lett. 65 (1990) 3233 [INSPIRE].
  3. [3]
    E. Silverstein and A. Westphal, Monodromy in the CMB: Gravity Waves and String Inflation, Phys. Rev. D 78 (2008) 106003 [arXiv:0803.3085] [INSPIRE].
  4. [4]
    L. McAllister, E. Silverstein and A. Westphal, Gravity Waves and Linear Inflation from Axion Monodromy, Phys. Rev. D 82 (2010) 046003 [arXiv:0808.0706] [INSPIRE].
  5. [5]
    N. Kaloper and L. Sorbo, A Natural Framework for Chaotic Inflation, Phys. Rev. Lett. 102 (2009) 121301 [arXiv:0811.1989] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    N. Kaloper and L. Sorbo, Where in the String Landscape is Quintessence, Phys. Rev. D 79 (2009) 043528 [arXiv:0810.5346] [INSPIRE].
  7. [7]
    N. Kaloper, A. Lawrence and L. Sorbo, An Ignoble Approach to Large Field Inflation, JCAP 03 (2011) 023 [arXiv:1101.0026] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    G. Dvali, Large hierarchies from attractor vacua, Phys. Rev. D 74 (2006) 025018 [hep-th/0410286] [INSPIRE].
  9. [9]
    G. Dvali, Three-form gauging of axion symmetries and gravity, hep-th/0507215 [INSPIRE].
  10. [10]
    N. Kaloper and A. Lawrence, Natural chaotic inflation and ultraviolet sensitivity, Phys. Rev. D 90 (2014) 023506 [arXiv:1404.2912] [INSPIRE].
  11. [11]
    G. D’Amico, N. Kaloper and A. Lawrence, Monodromy Inflation in the Strong Coupling Regime of the Effective Field Theory, Phys. Rev. Lett. 121 (2018) 091301 [arXiv:1709.07014] [INSPIRE].
  12. [12]
    F. Marchesano, G. Shiu and A.M. Uranga, F-term Axion Monodromy Inflation, JHEP 09 (2014) 184 [arXiv:1404.3040] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    A. Hebecker, F. Rompineve and A. Westphal, Axion Monodromy and the Weak Gravity Conjecture, JHEP 04 (2016) 157 [arXiv:1512.03768] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  14. [14]
    Y.B. Zeldovich, Cosmological Constant and Elementary Particles, JETP Lett. 6 (1967) 316 [Pisma Zh. Eksp. Teor. Fiz. 6 (1967) 883] [INSPIRE].
  15. [15]
    Y.B. Zel’dovich, The Cosmological constant and the theory of elementary particles, Sov. Phys. Usp. 11 (1968) 381 [Usp. Fiz. Nauk 95 (1968) 209], republished in [Gen. Rel. Grav. 40 (2008) 1557] [INSPIRE].
  16. [16]
    S. Weinberg, The Cosmological Constant Problem, Rev. Mod. Phys. 61 (1989) 1 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    J. Polchinski, The Cosmological Constant and the String Landscape, in proceedings of 23rd Solvay Conference in Physics: The Quantum Structure of Space and Time, Brussels, Belgium, 1-3 December 2005, pp. 216-236 [hep-th/0603249] [INSPIRE].
  18. [18]
    C.P. Burgess, The Cosmological Constant Problem: Why it’s hard to get Dark Energy from Micro-physics, in proceedings of the 100e Ecole d’Ete de Physique: Post-Planck Cosmology, Les Houches, France, 8 July-2 August 2013, C. Deffayet, P. Peter, B. Wandelt, M. Zaldarriaga and L.F. Cugliandolo eds., Oxford University Press, Oxford U.K. (2015), pp. 149-197 [arXiv:1309.4133] [INSPIRE].
  19. [19]
    A. Padilla, Lectures on the Cosmological Constant Problem, arXiv:1502.05296 [INSPIRE].
  20. [20]
    G.F. Giudice, Naturally Speaking: The Naturalness Criterion and Physics at the LHC, in Perspectives on LHC physics, G. Kane and A. Pierce eds., World Scientific (2008), pp. 155-178 [arXiv:0801.2562] [INSPIRE].
  21. [21]
    N. Kaloper and A. Padilla, Sequestering the Standard Model Vacuum Energy, Phys. Rev. Lett. 112 (2014) 091304 [arXiv:1309.6562] [INSPIRE].
  22. [22]
    N. Kaloper and A. Padilla, Vacuum Energy Sequestering: The Framework and Its Cosmological Consequences, Phys. Rev. D 90 (2014) 084023 [Addendum ibid. D 90 (2014) 109901] [arXiv:1406.0711] [INSPIRE].
  23. [23]
    N. Kaloper and A. Padilla, Sequestration of Vacuum Energy and the End of the Universe, Phys. Rev. Lett. 114 (2015) 101302 [arXiv:1409.7073] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    N. Kaloper, A. Padilla, D. Stefanyszyn and G. Zahariade, Manifestly Local Theory of Vacuum Energy Sequestering, Phys. Rev. Lett. 116 (2016) 051302 [arXiv:1505.01492] [INSPIRE].
  25. [25]
    N. Kaloper, A. Padilla and D. Stefanyszyn, Sequestering effects on and of vacuum decay, Phys. Rev. D 94 (2016) 025022 [arXiv:1604.04000] [INSPIRE].
  26. [26]
    N. Kaloper and A. Padilla, Vacuum Energy Sequestering and Graviton Loops, Phys. Rev. Lett. 118 (2017) 061303 [arXiv:1606.04958] [INSPIRE].
  27. [27]
    G. D’Amico, N. Kaloper, A. Padilla, D. Stefanyszyn, A. Westphal and G. Zahariade, An étude on global vacuum energy sequester, JHEP 09 (2017) 074 [arXiv:1705.08950] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  28. [28]
    A. Adams, J. McGreevy and E. Silverstein, Decapitating tadpoles, hep-th/0209226 [INSPIRE].
  29. [29]
    F. Niedermann and A. Padilla, Gravitational Mechanisms to Self-Tune the Cosmological Constant: Obstructions and Ways Forward, Phys. Rev. Lett. 119 (2017) 251306 [arXiv:1706.04778] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    J. Polchinski and A. Strominger, New vacua for type-II string theory, Phys. Lett. B 388 (1996) 736 [hep-th/9510227] [INSPIRE].
  31. [31]
    R. Bousso and J. Polchinski, Quantization of four form fluxes and dynamical neutralization of the cosmological constant, JHEP 06 (2000) 006 [hep-th/0004134] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    G. ’t Hooft, Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking, NATO Sci. Ser. B 59 (1980) 135 [INSPIRE].
  33. [33]
    C. Armendariz-Picon, T. Damour and V.F. Mukhanov, k-inflation, Phys. Lett. B 458 (1999) 209 [hep-th/9904075] [INSPIRE].
  34. [34]
    A. Padilla and I.D. Saltas, Vainshtein in the UV and a Wilsonian analysis of derivatively coupled scalars, JCAP 06 (2018) 039 [arXiv:1712.04019] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    N. Kaloper, Irrational Monodromies of Vacuum Energy, arXiv:1806.03308 [INSPIRE].
  36. [36]
    A. Manohar and H. Georgi, Chiral Quarks and the Nonrelativistic Quark Model, Nucl. Phys. B 234 (1984) 189 [INSPIRE].
  37. [37]
    B.M. Gavela, E.E. Jenkins, A.V. Manohar and L. Merlo, Analysis of General Power Counting Rules in Effective Field Theory, Eur. Phys. J. C 76 (2016) 485 [arXiv:1601.07551] [INSPIRE].
  38. [38]
    P.W. Graham, D.E. Kaplan and S. Rajendran, Cosmological Relaxation of the Electroweak Scale, Phys. Rev. Lett. 115 (2015) 221801 [arXiv:1504.07551] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    L. McAllister, P. Schwaller, G. Servant, J. Stout and A. Westphal, Runaway Relaxion Monodromy, JHEP 02 (2018) 124 [arXiv:1610.05320] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    C.M. Will, The Confrontation between General Relativity and Experiment, Living Rev. Rel. 17 (2014) 4 [arXiv:1403.7377] [INSPIRE].CrossRefzbMATHGoogle Scholar
  41. [41]
    J. Martin, Everything You Always Wanted To Know About The Cosmological Constant Problem (But Were Afraid To Ask), Comptes Rendus Physique 13 (2012) 566 [arXiv:1205.3365] [INSPIRE].
  42. [42]
    J.-G. Demers, R. Lafrance and R.C. Myers, Black hole entropy without brick walls, Phys. Rev. D 52 (1995) 2245 [gr-qc/9503003] [INSPIRE].
  43. [43]
    F.S. Accetta and P.J. Steinhardt, Cosmological consequences of high frequency oscillations of Newton’s constant, Phys. Rev. Lett. 67 (1991) 298 [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.School of Physics and Astronomy, University of NottinghamNottinghamU.K.

Personalised recommendations