Advertisement

Journal of High Energy Physics

, 2019:168 | Cite as

A theory of R(D*, D) anomaly with right-handed currents

  • K. S. BabuEmail author
  • Bhaskar Dutta
  • Rabindra N. Mohapatra
Open Access
Regular Article - Theoretical Physics
  • 10 Downloads

Abstract

We present an ultraviolet complete theory for the R(D*) and R(D) anomaly in terms of a low mass W R ± gauge boson of a class of left-right symmetric models. These models, which are based on the gauge symmetry SU(3)c × SU(2)L × SU(2)R × U(1)BL, utilize vector-like fermions to generate quark and lepton masses via a universal seesaw mechanism. A parity symmetric version as well as an asymmetric version are studied. A light sterile neutrino emerges naturally in this setup, which allows for new decay modes of B-meson via right-handed currents. We show that these models can explain R(D*) and R(D) anomaly while being consistent with LHC and LEP data as well as low energy flavor constraints arising from \( {K}_L-{K}_S,\kern0.5em {B}_{d,s}-{\overline{B}}_{d,s},\kern0.5em D-\overline{D} \) mixing, etc., but only for a limited range of the WR mass: 1.2 (1.8) TeV ≤ \( {M}_{W_R} \) ≤ 3 TeV for parity asymmetric (symmetric) Yukawa sectors. The ratio R(D)/R(D*) is predicted to be ≃ 1.16, which is the same as in the Standard Model. The light sterile neutrinos predicted by the model may be relevant for explaining the MiniBoone and LSND neutrino oscillation results. The parity symmetric version of the model provides a simple solution to the strong CP problem without relying on the axion. It also predicts an isospin singlet top partner with a mass MT = (1.5 − 2.5) TeV.

Keywords

Beyond Standard Model Gauge Symmetry Heavy Quark Physics 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    BaBar collaboration, Evidence for an excess of \( \overline{B}\to {D}^{\left(\ast \right)}{\tau}^{-}{\overline{\nu}}_{\tau } \) decays, Phys. Rev. Lett. 109 (2012) 101802 [arXiv:1205.5442] [INSPIRE].
  2. [2]
    BaBar collaboration, Measurement of an Excess of \( \overline{B}\to {D}^{\left(\ast \right)}{\tau}^{-}{\overline{\nu}}_{\tau } \) Decays and Implications for Charged Higgs Bosons, Phys. Rev. D 88 (2013) 072012 [arXiv:1303.0571] [INSPIRE].
  3. [3]
    Belle collaboration, Measurement of the branching ratio of \( \overline{B}\to {D}^{\left(\ast \right)}{\tau}^{-}{\overline{\nu}}_{\tau } \) relative to \( \overline{B}\to {D}^{\left(\ast \right)}{\ell}^{-}{\overline{\nu}}_{\ell } \) decays with hadronic tagging at Belle, Phys. Rev. D 92 (2015) 072014 [arXiv:1507.03233] [INSPIRE].
  4. [4]
    Belle collaboration, Measurement of the branching ratio of \( {\overline{B}}^0\to {D}^{\ast +}{\tau}^{-}{\overline{\nu}}_{\tau } \) relative to \( {\overline{B}}^0\to {D}^{\ast +}{\ell}^{-}{\overline{\nu}}_{\ell } \) decays with a semileptonic tagging method, in Proceedings, 51st Rencontres de Moriond on Electroweak Interactions and Unified Theories: La Thuile, Italy, March 12–19, 2016, arXiv:1603.06711 [INSPIRE].
  5. [5]
    A. Abdesselam et al., Measurement of the τ lepton polarization in the decay \( \overline{B}\to {D}^{\ast }{\tau}^{-}{\overline{\nu}}_{\tau } \), arXiv:1608.06391 [INSPIRE].
  6. [6]
    LHCb collaboration, Measurement of the ratio of branching fractions \( \mathrm{\mathcal{B}}\left({\overline{B}}^0\to {D}^{\ast +}{\tau}^{-}{\overline{\nu}}_{\tau}\right)/\mathrm{\mathcal{B}}\left({\overline{B}}^0\to {D}^{\ast +}{\mu}^{-}{\overline{\nu}}_{\mu}\right) \), Phys. Rev. Lett. 115 (2015) 111803 [Erratum ibid. 115 (2015) 159901] [arXiv:1506.08614] [INSPIRE].
  7. [7]
    LHCb collaboration, Measurement of the ratio of branching fractions ℬ(B c+ → J/ψτ + ν τ)/ℬ(B c+ → J/ψμ + ν μ), LHCB-PAPER-2017-035 (2017).
  8. [8]
    X.-G. He and G. Valencia, B decays with τ leptons in nonuniversal left-right models, Phys. Rev. D 87 (2013) 014014 [arXiv:1211.0348] [INSPIRE].Google Scholar
  9. [9]
    X.-G. He and G. Valencia, Lepton universality violation and right-handed currents in bcτν, Phys. Lett. B 779 (2018) 52 [arXiv:1711.09525] [INSPIRE].CrossRefGoogle Scholar
  10. [10]
    A. Greljo, D.J. Robinson, B. Shakya and J. Zupan, R(D (*)) from Wand right-handed neutrinos, JHEP 09 (2018) 169 [arXiv:1804.04642] [INSPIRE].CrossRefGoogle Scholar
  11. [11]
    D.J. Robinson, B. Shakya and J. Zupan, Right-handed Neutrinos and R(D (*)), arXiv:1807.04753 [INSPIRE].
  12. [12]
    P. Asadi, M.R. Buckley and D. Shih, It’s all right(-handed neutrinos): a new Wmodel for the \( {R}_{D^{\left(*\right)}} \) anomaly, JHEP 09 (2018) 010 [arXiv:1804.04135] [INSPIRE].CrossRefGoogle Scholar
  13. [13]
    P. Asadi, M.R. Buckley and D. Shih, Asymmetry Observables and the Origin of \( {R}_{D^{\left(*\right)}} \) Anomalies, arXiv:1810.06597 [INSPIRE].
  14. [14]
    J.C. Pati and A. Salam, Lepton Number as the Fourth Color, Phys. Rev. D 10 (1974) 275 [Erratum ibid. D 11 (1975) 703] [INSPIRE].
  15. [15]
    R.N. Mohapatra and J.C. Pati, Left-Right Gauge Symmetry and an Isoconjugate Model of CP-violation, Phys. Rev. D 11 (1975) 566 [INSPIRE].Google Scholar
  16. [16]
    G. Senjanović and R.N. Mohapatra, Exact Left-Right Symmetry and Spontaneous Violation of Parity, Phys. Rev. D 12 (1975) 1502 [INSPIRE].Google Scholar
  17. [17]
    G. Beall, M. Bander and A. Soni, Constraint on the Mass Scale of a Left-Right Symmetric Electroweak Theory from the K L – K S Mass Difference, Phys. Rev. Lett. 48 (1982) 848 [INSPIRE].CrossRefGoogle Scholar
  18. [18]
    Y. Zhang, H. An, X. Ji and R.N. Mohapatra, General CP-violation in Minimal Left-Right Symmetric Model and Constraints on the Right-Handed Scale, Nucl. Phys. B 802 (2008) 247 [arXiv:0712.4218] [INSPIRE].CrossRefzbMATHGoogle Scholar
  19. [19]
    A. Maiezza, M. Nemevšek, F. Nesti and G. Senjanović, Left-Right Symmetry at LHC, Phys. Rev. D 82 (2010) 055022 [arXiv:1005.5160] [INSPIRE].Google Scholar
  20. [20]
    M. Nemevšek, F. Nesti, G. Senjanović and Y. Zhang, First Limits on Left-Right Symmetry Scale from LHC Data, Phys. Rev. D 83 (2011) 115014 [arXiv:1103.1627] [INSPIRE].Google Scholar
  21. [21]
    B.A. Dobrescu and P.J. Fox, Signals of a 2 TeV Wboson and a heavier Zboson, JHEP 05 (2016) 047 [arXiv:1511.02148] [INSPIRE].CrossRefGoogle Scholar
  22. [22]
    P.S.B. Dev, R.N. Mohapatra and Y. Zhang, Long Lived Light Scalars as Probe of Low Scale Seesaw Models, Nucl. Phys. B 923 (2017) 179 [arXiv:1703.02471] [INSPIRE].CrossRefzbMATHGoogle Scholar
  23. [23]
    P. Langacker and S.U. Sankar, Bounds on the Mass of W R and the W L – W R Mixing Angle ξ in General SU(2)L × SU(2)R × U(1) Models, Phys. Rev. D 40 (1989) 1569 [INSPIRE].Google Scholar
  24. [24]
    Z.G. Berezhiani, The Weak Mixing Angles in Gauge Models with Horizontal Symmetry: A New Approach to Quark and Lepton Masses, Phys. Lett. 129B (1983) 99 [INSPIRE].CrossRefGoogle Scholar
  25. [25]
    D. Chang and R.N. Mohapatra, Small and Calculable Dirac Neutrino Mass, Phys. Rev. Lett. 58 (1987) 1600 [INSPIRE].CrossRefGoogle Scholar
  26. [26]
    A. Davidson and K.C. Wali, Universal Seesaw Mechanism?, Phys. Rev. Lett. 59 (1987) 393 [INSPIRE].CrossRefGoogle Scholar
  27. [27]
    S. Rajpoot, See-saw masses for quarks and leptons in an ambidextrous electroweak interaction model, Mod. Phys. Lett. A 2 (1987) 307 [Erratum ibid. A 2 (1987) 541] [INSPIRE].
  28. [28]
    K.S. Babu and R.N. Mohapatra, CP Violation in Seesaw Models of Quark Masses, Phys. Rev. Lett. 62 (1989) 1079 [INSPIRE].CrossRefGoogle Scholar
  29. [29]
    K.S. Babu and R.N. Mohapatra, A Solution to the Strong CP Problem Without an Axion, Phys. Rev. D 41 (1990) 1286 [INSPIRE].Google Scholar
  30. [30]
    MiniBooNE collaboration, Significant Excess of ElectronLike Events in the MiniBooNE Short-Baseline Neutrino Experiment, Phys. Rev. Lett. 121 (2018) 221801 [arXiv:1805.12028] [INSPIRE].
  31. [31]
    MiniBooNE collaboration, Improved Search for \( {\overline{\nu}}_{\mu}\to {\overline{\nu}}_e \) Oscillations in the MiniBooNE Experiment, Phys. Rev. Lett. 110 (2013) 161801 [arXiv:1303.2588] [INSPIRE].
  32. [32]
    LSND collaboration, Evidence for ν μν e neutrino oscillations from LSND, Phys. Rev. Lett. 81 (1998) 1774 [nucl-ex/9709006] [INSPIRE].
  33. [33]
    LSND collaboration, Evidence for neutrino oscillations from the observation of \( {\overline{\nu}}_e \) appearance in a \( {\overline{\nu}}_{\mu } \) beam, Phys. Rev. D 64 (2001) 112007 [hep-ex/0104049] [INSPIRE].
  34. [34]
    Planck collaboration, Planck 2013 results. XVI. Cosmological parameters, Astron. Astrophys. 571 (2014) A16 [arXiv:1303.5076] [INSPIRE].
  35. [35]
    Planck collaboration, Planck 2018 results. VI. Cosmological parameters, arXiv:1807.06209 [INSPIRE].
  36. [36]
    K.S. Babu and I.Z. Rothstein, Relaxing nucleosynthesis bounds on sterile-neutrinos, Phys. Lett. B 275 (1992) 112 [INSPIRE].CrossRefGoogle Scholar
  37. [37]
    B. Dasgupta and J. Kopp, Cosmologically Safe eV-Scale Sterile Neutrinos and Improved Dark Matter Structure, Phys. Rev. Lett. 112 (2014) 031803 [arXiv:1310.6337] [INSPIRE].CrossRefGoogle Scholar
  38. [38]
    S. Hannestad, R.S. Hansen and T. Tram, How Self-Interactions can Reconcile Sterile Neutrinos with Cosmology, Phys. Rev. Lett. 112 (2014) 031802 [arXiv:1310.5926] [INSPIRE].CrossRefGoogle Scholar
  39. [39]
    J.F. Cherry, A. Friedland and I.M. Shoemaker, Short-baseline neutrino oscillations, Planck and IceCube, arXiv:1605.06506 [INSPIRE].
  40. [40]
    L.J. Hall and K. Harigaya, Implications of Higgs Discovery for the Strong CP Problem and Unification, JHEP 10 (2018) 130 [arXiv:1803.08119] [INSPIRE].CrossRefGoogle Scholar
  41. [41]
    K.S. Babu, D. Eichler and R.N. Mohapatra, Right-handed neutrino as weakly unstable dark matter, Phys. Lett. B 226 (1989) 347 [INSPIRE].CrossRefGoogle Scholar
  42. [42]
    Y. Sakaki, M. Tanaka, A. Tayduganov and R. Watanabe, Testing leptoquark models in \( \overline{B}\to {D}^{\left(\ast \right)}\tau \overline{\nu} \), Phys. Rev. D 88 (2013) 094012 [arXiv:1309.0301] [INSPIRE].Google Scholar
  43. [43]
    B. Gripaios, M. Nardecchia and S.A. Renner, Composite leptoquarks and anomalies in B-meson decays, JHEP 05 (2015) 006 [arXiv:1412.1791] [INSPIRE].CrossRefGoogle Scholar
  44. [44]
    S. Sahoo and R. Mohanta, Scalar leptoquarks and the rare B meson decays, Phys. Rev. D 91 (2015) 094019 [arXiv:1501.05193] [INSPIRE].Google Scholar
  45. [45]
    L. Calibbi, A. Crivellin and T. Ota, Effective Field Theory Approach to bsℓℓ () , \( B\to {K}^{\left(\ast \right)}\nu \overline{\nu} \) and B → D (∗) τν with Third Generation Couplings, Phys. Rev. Lett. 115 (2015) 181801 [arXiv:1506.02661] [INSPIRE].CrossRefGoogle Scholar
  46. [46]
    R. Alonso, B. Grinstein and J. Martin Camalich, Lepton universality violation and lepton flavor conservation in B-meson decays, JHEP 10 (2015) 184 [arXiv:1505.05164] [INSPIRE].CrossRefGoogle Scholar
  47. [47]
    M. Bauer and M. Neubert, Minimal Leptoquark Explanation for the \( {R}_{D^{\left(*\right)}} \) , R K and (g − 2)g Anomalies, Phys. Rev. Lett. 116 (2016) 141802 [arXiv:1511.01900] [INSPIRE].CrossRefGoogle Scholar
  48. [48]
    S. Fajfer and N. Košnik, Vector leptoquark resolution of R K and \( {R}_{D^{\left(*\right)}} \) puzzles, Phys. Lett. B 755 (2016) 270 [arXiv:1511.06024] [INSPIRE].CrossRefGoogle Scholar
  49. [49]
    R. Barbieri, G. Isidori, A. Pattori and F. Senia, Anomalies in B-decays and U(2) flavour symmetry, Eur. Phys. J. C 76 (2016) 67 [arXiv:1512.01560] [INSPIRE].CrossRefGoogle Scholar
  50. [50]
    D. Das, C. Hati, G. Kumar and N. Mahajan, Towards a unified explanation of \( {R}_{D^{\left(*\right)}} \) , R K and (g − 2)μ anomalies in a left-right model with leptoquarks, Phys. Rev. D 94 (2016) 055034 [arXiv:1605.06313] [INSPIRE].Google Scholar
  51. [51]
    D. Bečirević, S. Fajfer, N. Košnik and O. Sumensari, Leptoquark model to explain the B-physics anomalies, R K and R D, Phys. Rev. D 94 (2016) 115021 [arXiv:1608.08501] [INSPIRE].Google Scholar
  52. [52]
    X.-Q. Li, Y.-D. Yang and X. Zhang, Revisiting the one leptoquark solution to the R(D (*)) anomalies and its phenomenological implications, JHEP 08 (2016) 054 [arXiv:1605.09308] [INSPIRE].CrossRefGoogle Scholar
  53. [53]
    C.-H. Chen, T. Nomura and H. Okada, Excesses of muon g − 2, \( {R}_{D^{\left(*\right)}} \) and R K in a leptoquark model, Phys. Lett. B 774 (2017) 456 [arXiv:1703.03251] [INSPIRE].CrossRefGoogle Scholar
  54. [54]
    S. Sahoo, R. Mohanta and A.K. Giri, Explaining the R K and \( {R}_{D^{\left(*\right)}} \) anomalies with vector leptoquarks, Phys. Rev. D 95 (2017) 035027 [arXiv:1609.04367] [INSPIRE].Google Scholar
  55. [55]
    D.A. Faroughy, A. Greljo and J.F. Kamenik, Confronting lepton flavor universality violation in B decays with high-p T tau lepton searches at LHC, Phys. Lett. B 764 (2017) 126 [arXiv:1609.07138] [INSPIRE].CrossRefGoogle Scholar
  56. [56]
    G. Hiller, D. Loose and K. Schönwald, Leptoquark Flavor Patterns & B Decay Anomalies, JHEP 12 (2016) 027 [arXiv:1609.08895] [INSPIRE].CrossRefGoogle Scholar
  57. [57]
    O. Popov and G.A. White, One Leptoquark to unify them? Neutrino masses and unification in the light of (g − 2)μ , \( {R}_{D^{\left(\star \right)}} \) and R K anomalies, Nucl. Phys. B 923 (2017) 324 [arXiv:1611.04566] [INSPIRE].CrossRefGoogle Scholar
  58. [58]
    B. Bhattacharya, A. Datta, J.-P. Guévin, D. London and R. Watanabe, Simultaneous Explanation of the R K and \( {R}_{D^{\left(*\right)}} \) Puzzles: a Model Analysis, JHEP 01 (2017) 015 [arXiv:1609.09078] [INSPIRE].CrossRefGoogle Scholar
  59. [59]
    A. Crivellin, D. Müller and T. Ota, Simultaneous explanation of R(D (*)) and b + μ : the last scalar leptoquarks standing, JHEP 09 (2017) 040 [arXiv:1703.09226] [INSPIRE].CrossRefGoogle Scholar
  60. [60]
    L. Di Luzio and M. Nardecchia, What is the scale of new physics behind the B-flavour anomalies?, Eur. Phys. J. C 77 (2017) 536 [arXiv:1706.01868] [INSPIRE].CrossRefGoogle Scholar
  61. [61]
    M. Blanke and A. Crivellin, B Meson Anomalies in a Pati-Salam Model within the Randall-Sundrum Background, Phys. Rev. Lett. 121 (2018) 011801 [arXiv:1801.07256] [INSPIRE].CrossRefGoogle Scholar
  62. [62]
    A. Monteux and A. Rajaraman, B Anomalies and Leptoquarks at the LHC: Beyond the Lepton-Quark Final State, Phys. Rev. D 98 (2018) 115032 [arXiv:1803.05962] [INSPIRE].Google Scholar
  63. [63]
    D. Bečirević, I. Doršner, S. Fajfer, N. Košnik, D.A. Faroughy and O. Sumensari, Scalar leptoquarks from grand unified theories to accommodate the B-physics anomalies, Phys. Rev. D 98 (2018) 055003 [arXiv:1806.05689] [INSPIRE].Google Scholar
  64. [64]
    A. Biswas, D. Kumar Ghosh, N. Ghosh, A. Shaw and A.K. Swain, Novel collider signature of U 1 Leptoquark and Bπ observables, arXiv:1808.04169 [INSPIRE].
  65. [65]
    A. Angelescu, D. Bečirević, D.A. Faroughy and O. Sumensari, Closing the window on single leptoquark solutions to the B-physics anomalies, JHEP 10 (2018) 183 [arXiv:1808.08179] [INSPIRE].CrossRefGoogle Scholar
  66. [66]
    J. Heeck and D. Teresi, Pati-Salam explanations of the B-meson anomalies, JHEP 12 (2018) 103 [arXiv:1808.07492] [INSPIRE].CrossRefGoogle Scholar
  67. [67]
    S. Bansal, R.M. Capdevilla and C. Kolda, On the Minimal Flavor Violating Leptoquark Explanation of the \( {R}_{D^{\left(*\right)}} \) Anomaly, arXiv:1810.11588 [INSPIRE].
  68. [68]
    B. Bhattacharya, A. Datta, D. London and S. Shivashankara, Simultaneous Explanation of the R K and R(D (*)) Puzzles, Phys. Lett. B 742 (2015) 370 [arXiv:1412.7164] [INSPIRE].CrossRefzbMATHGoogle Scholar
  69. [69]
    A. Greljo, G. Isidori and D. Marzocca, On the breaking of Lepton Flavor Universality in B decays, JHEP 07 (2015) 142 [arXiv:1506.01705] [INSPIRE].CrossRefGoogle Scholar
  70. [70]
    S. Bhattacharya, S. Nandi and S.K. Patra, Optimal-observable analysis of possible new physics in BD (*) τν τ, Phys. Rev. D 93 (2016) 034011 [arXiv:1509.07259] [INSPIRE].Google Scholar
  71. [71]
    S.M. Boucenna, A. Celis, J. Fuentes-Martin, A. Vicente and J. Virto, Non-abelian gauge extensions for B-decay anomalies, Phys. Lett. B 760 (2016) 214 [arXiv:1604.03088] [INSPIRE].CrossRefGoogle Scholar
  72. [72]
    S.M. Boucenna, A. Celis, J. Fuentes-Martin, A. Vicente and J. Virto, Phenomenology of an SU(2) × SU(2) × U(1) model with lepton-flavour non-universality, JHEP 12 (2016) 059 [arXiv:1608.01349] [INSPIRE].CrossRefGoogle Scholar
  73. [73]
    D. Bardhan, P. Byakti and D. Ghosh, A closer look at the R D and \( {R}_{D^{*}} \) anomalies, JHEP 01 (2017) 125 [arXiv:1610.03038] [INSPIRE].CrossRefGoogle Scholar
  74. [74]
    D. Choudhury, A. Kundu, R. Mandal and R. Sinha, Minimal unified resolution to \( {R}_{K^{\left(\ast \right)}} \) and R(D (*)) anomalies with lepton mixing, Phys. Rev. Lett. 119 (2017) 151801 [arXiv:1706.08437] [INSPIRE].CrossRefGoogle Scholar
  75. [75]
    R. Dutta, Exploring R D , \( {R}_{D^{*}} \) and R J anomalies, arXiv:1710.00351 [INSPIRE].
  76. [76]
    T.D. Cohen, H. Lamm and R.F. Lebed, Tests of the standard model in BDℓν , BD * ℓν and B cJ/ψℓν , Phys. Rev. D 98 (2018) 034022 [arXiv:1807.00256] [INSPIRE].Google Scholar
  77. [77]
    X.-W. Kang, T. Luo, Y. Zhang, L.-Y. Dai and C. Wang, Semileptonic B and B s decays involving scalar and axial-vector mesons, Eur. Phys. J. C 78 (2018) 909 [arXiv:1808.02432] [INSPIRE].CrossRefGoogle Scholar
  78. [78]
    M. Abdullah, J. Calle, B. Dutta, A. Flórez and D. Restrepo, Probing a simplified, Wmodel of R(D (*)) anomalies using b-tags, τ leptons and missing energy, Phys. Rev. D 98 (2018) 055016 [arXiv:1805.01869] [INSPIRE].Google Scholar
  79. [79]
    J. Zhu, H.-M. Gan, R.-M. Wang, Y.-Y. Fan, Q. Chang and Y.-G. Xu, Probing the R-parity violating supersymmetric effects in the exclusive \( b\to c{\ell}^{-}{\overline{\nu}}_{\ell } \) decays, Phys. Rev. D 93 (2016) 094023 [arXiv:1602.06491] [INSPIRE].Google Scholar
  80. [80]
    N.G. Deshpande and X.-G. He, Consequences of R-parity violating interactions for anomalies in \( \overline{B}\to {D}^{\left(\ast \right)}\tau \overline{\nu} \) and b + μ , Eur. Phys. J. C 77 (2017) 134 [arXiv:1608.04817] [INSPIRE].CrossRefGoogle Scholar
  81. [81]
    W. Altmannshofer, P. Bhupal Dev and A. Soni, \( {R}_{D^{\left(*\right)}} \) anomaly: A possible hint for natural supersymmetry with R-parity violation, Phys. Rev. D 96 (2017) 095010 [arXiv:1704.06659] [INSPIRE].Google Scholar
  82. [82]
    Q.-Y. Hu, X.-Q. Li, Y. Muramatsu and Y.-D. Yang, R-parity violating solutions to the \( {R}_{D^{\left(*\right)}} \) anomaly and their GUT-scale unifications, Phys. Rev. D 99 (2019) 015008 [arXiv:1808.01419] [INSPIRE].Google Scholar
  83. [83]
    E. Megías, M. Quirós and L. Salas, Lepton-flavor universality violation in R K and \( {R}_{D^{\left(*\right)}} \) from warped space, JHEP 07 (2017) 102 [arXiv:1703.06019] [INSPIRE].
  84. [84]
    A. Biswas, A. Shaw and S.K. Patra, \( \mathrm{\mathcal{R}} \)(D (*)) anomalies in light of a nonminimal universal extra dimension, Phys. Rev. D 97 (2018) 035019 [arXiv:1708.08938] [INSPIRE].Google Scholar
  85. [85]
    S. Dasgupta, U.K. Dey, T. Jha and T.S. Ray, Status of a flavor-maximal nonminimal universal extra dimension model, Phys. Rev. D 98 (2018) 055006 [arXiv:1801.09722] [INSPIRE].Google Scholar
  86. [86]
    M. Carena, E. Megıas, M. Quíros and C. Wagner, \( {R}_{D^{\left(\ast \right)}} \) in custodial warped space, JHEP 12 (2018) 043 [arXiv:1809.01107] [INSPIRE].
  87. [87]
    A. Crivellin, C. Greub and A. Kokulu, Explaining BDτν, BD * τν and Bτν in a 2HDM of type-III, Phys. Rev. D 86 (2012) 054014 [arXiv:1206.2634] [INSPIRE].Google Scholar
  88. [88]
    A. Datta, M. Duraisamy and D. Ghosh, Diagnosing New Physics in bcτν τ decays in the light of the recent BaBar result, Phys. Rev. D 86 (2012) 034027 [arXiv:1206.3760] [INSPIRE].Google Scholar
  89. [89]
    A. Celis, M. Jung, X.-Q. Li and A. Pich, Sensitivity to charged scalars in BD (*) τν τ and Bτν τ decays, JHEP 01 (2013) 054 [arXiv:1210.8443] [INSPIRE].CrossRefGoogle Scholar
  90. [90]
    M. Tanaka and R. Watanabe, New physics in the weak interaction of \( \overline{B}\to {D}^{\left(\ast \right)}\tau \overline{\nu} \), Phys. Rev. D 87 (2013) 034028 [arXiv:1212.1878] [INSPIRE].Google Scholar
  91. [91]
    M. Freytsis, Z. Ligeti and J.T. Ruderman, Flavor models for \( \overline{B}\to {D}^{\left(\ast \right)}\tau \overline{\nu} \), Phys. Rev. D 92 (2015) 054018 [arXiv:1506.08896] [INSPIRE].Google Scholar
  92. [92]
    A. Crivellin, J. Heeck and P. Stoffer, A perturbed lepton-specific two-Higgs-doublet model facing experimental hints for physics beyond the Standard Model, Phys. Rev. Lett. 116 (2016) 081801 [arXiv:1507.07567] [INSPIRE].CrossRefGoogle Scholar
  93. [93]
    J.M. Cline, Scalar doublet models confront τ and b anomalies, Phys. Rev. D 93 (2016) 075017 [arXiv:1512.02210] [INSPIRE].Google Scholar
  94. [94]
    P. Ko, Y. Omura, Y. Shigekami and C. Yu, LHCb anomaly and B physics in flavored Z’ models with flavored Higgs doublets, Phys. Rev. D 95 (2017) 115040 [arXiv:1702.08666] [INSPIRE].Google Scholar
  95. [95]
    C.-H. Chen and T. Nomura, Charged-Higgs on \( {R}_{D^{\left(\ast \right)}} \) , τ polarization and FBA, Eur. Phys. J. C 77 (2017) 631 [arXiv:1703.03646] [INSPIRE].CrossRefGoogle Scholar
  96. [96]
    S. Iguro and K. Tobe, R(D (*)) in a general two Higgs doublet model, Nucl. Phys. B 925 (2017) 560 [arXiv:1708.06176] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  97. [97]
    A.G. Akeroyd and C.-H. Chen, Constraint on the branching ratio of \( {B}_c\to \tau \overline{\nu} \) from LEP1 and consequences for R(D (*)) anomaly, Phys. Rev. D 96 (2017) 075011 [arXiv:1708.04072] [INSPIRE].Google Scholar
  98. [98]
    A.K. Alok, D. Kumar, J. Kumar, S. Kumbhakar and S.U. Sankar, New physics solutions for R D and \( {R}_{D^{*}} \), JHEP 09 (2018) 152 [arXiv:1710.04127] [INSPIRE].CrossRefGoogle Scholar
  99. [99]
    S. Iguro and Y. Omura, Status of the semileptonic B decays and muon g-2 in general 2HDMs with right-handed neutrinos, JHEP 05 (2018) 173 [arXiv:1802.01732] [INSPIRE].CrossRefGoogle Scholar
  100. [100]
    R. Alonso, B. Grinstein and J. Martin Camalich, Lifetime of B c Constrains Explanations for Anomalies in BD (*) τν, Phys. Rev. Lett. 118 (2017) 081802 [arXiv:1611.06676] [INSPIRE].CrossRefGoogle Scholar
  101. [101]
    K.S. Babu and X.G. He, Dirac neutrino masses as two loop radiative corrections, Mod. Phys. Lett. A 4 (1989) 61 [INSPIRE].CrossRefGoogle Scholar
  102. [102]
    D. Chang, R.N. Mohapatra and M.K. Parida, Decoupling Parity and SU(2)R Breaking Scales: A New Approach to Left-Right Symmetric Models, Phys. Rev. Lett. 52 (1984) 1072 [INSPIRE].CrossRefGoogle Scholar
  103. [103]
    P.S. Bhupal Dev, R.N. Mohapatra and Y. Zhang, Naturally stable right-handed neutrino dark matter, JHEP 11 (2016) 077 [arXiv:1608.06266] [INSPIRE].CrossRefGoogle Scholar
  104. [104]
    T. Inami and C.S. Lim, Effects of Superheavy Quarks and Leptons in Low-Energy Weak Processes \( {K}_L\to \mu \overline{\mu} \) , K +π + Neutrino anti-neutrino and \( {K}^0\leftrightarrow {\overline{K}}^0 \), Prog. Theor. Phys. 65 (1981) 297 [Erratum ibid. 65 (1981) 1772] [INSPIRE].
  105. [105]
    Particle Data Group collaboration, Review of Particle Physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].
  106. [106]
    R.N. Mohapatra, G. Senjanović and M.D. Tran, Strangeness Changing Processes and the Limit on the Right-handed Gauge Boson Mass, Phys. Rev. D 28 (1983) 546 [INSPIRE].Google Scholar
  107. [107]
    E. Ma, Verifiable radiative seesaw mechanism of neutrino mass and dark matter, Phys. Rev. D 73 (2006) 077301 [hep-ph/0601225] [INSPIRE].
  108. [108]
    R. Barbieri, L.J. Hall and V.S. Rychkov, Improved naturalness with a heavy Higgs: An alternative road to LHC physics, Phys. Rev. D 74 (2006) 015007 [hep-ph/0603188] [INSPIRE].
  109. [109]
  110. [110]
  111. [111]
    F.U. Bernlochner, Z. Ligeti, M. Papucci and D.J. Robinson, Combined analysis of semileptonic B decays to D and D * : R(D (*)), |V cb| and new physics, Phys. Rev. D 95 (2017) 115008 [Erratum ibid. D 97 (2018) 059902] [arXiv:1703.05330] [INSPIRE].
  112. [112]
    S. Jaiswal, S. Nandi and S.K. Patra, Extraction of |V cb| from BD (*) ℓν and the Standard Model predictions of R(D (*)), JHEP 12 (2017) 060 [arXiv:1707.09977] [INSPIRE].CrossRefGoogle Scholar
  113. [113]
    S. Bhattacharya, S. Nandi and S. Kumar Patra, bcτν τ Decays: A Catalogue to Compare, Constrain and Correlate New Physics Effects, arXiv:1805.08222 [INSPIRE].
  114. [114]
    D. Bigi, P. Gambino and S. Schacht, R(D *), |V cb| and the Heavy Quark Symmetry relations between form factors, JHEP 11 (2017) 061 [arXiv:1707.09509] [INSPIRE].CrossRefGoogle Scholar
  115. [115]
    S. Aoki et al., Review of lattice results concerning low-energy particle physics, Eur. Phys. J. C 77 (2017) 112 [arXiv:1607.00299] [INSPIRE].CrossRefGoogle Scholar
  116. [116]
    V.D. Barger and K. Whisnant, Heavy Z Boson Decays to Two Bosons in E 6 Superstring Models, Phys. Rev. D 36 (1987) 3429 [INSPIRE].Google Scholar
  117. [117]
    LEP, ALEPH, DELPHI, L3, OPAL, LEP Electroweak Working Group, SLD Electroweak Group and SLD Heavy Flavor Group collaborations, A combination of preliminary electroweak measurements and constraints on the standard model, hep-ex/0312023 [INSPIRE].
  118. [118]
    ATLAS collaboration, Search for new high-mass phenomena in the dilepton final state using 36 fb −1 of proton-proton collision data at \( \sqrt{s}=13 \) TeV with the ATLAS detector, JHEP 10 (2017) 182 [arXiv:1707.02424] [INSPIRE].
  119. [119]
    CMS collaboration, Search for high-mass resonances in dilepton final states in proton-proton collisions at \( \sqrt{s}=13 \) TeV, JHEP 06 (2018) 120 [arXiv:1803.06292] [INSPIRE].
  120. [120]
    T. Kamon, private communication.Google Scholar
  121. [121]
    ATLAS collaboration, Search for new phenomena in dijet events using 37 fb −1 of pp collision data collected at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Rev. D 96 (2017) 052004 [arXiv:1703.09127] [INSPIRE].
  122. [122]
    CMS collaboration, Search for narrow and broad dijet resonances in proton-proton collisions at \( \sqrt{s}=13 \) TeV and constraints on dark matter mediators and other new particles, JHEP 08 (2018) 130 [arXiv:1806.00843] [INSPIRE].
  123. [123]
    ATLAS collaboration, Search for High-Mass Resonances Decaying to τν in pp Collisions at \( \sqrt{s}=13 \) TeV with the ATLAS Detector, Phys. Rev. Lett. 120 (2018) 161802 [arXiv:1801.06992] [INSPIRE].
  124. [124]
    CMS collaboration, Search for a W’ boson decaying to a τ lepton and a neutrino in proton-proton collisions at \( \sqrt{s}=13 \) TeV, Submitted to: Phys. Lett. (2018) [arXiv:1807.11421] [INSPIRE].
  125. [125]
    R. Barbieri and R.N. Mohapatra, Limits on Right-handed Interactions From SN1987A Observations, Phys. Rev. D 39 (1989) 1229 [INSPIRE].Google Scholar
  126. [126]
    J. Lesgourgues, G. Mangano. G. Miele and S. Pastor, Neutrino Cosmology, Cambridge University Press, (2013), chapter 4.3.Google Scholar
  127. [127]
    M.S. Chanowitz, M.A. Furman and I. Hinchliffe, Weak Interactions of Ultraheavy Fermions, Phys. Lett. 78B (1978) 285 [INSPIRE].CrossRefGoogle Scholar
  128. [128]
    M.S. Chanowitz, M.A. Furman and I. Hinchliffe, Weak Interactions of Ultraheavy Fermions. 2., Nucl. Phys. B 153 (1979) 402 [INSPIRE].
  129. [129]
    K.S. Babu, J. Julio and Y. Zhang, Perturbative unitarity constraints on general W’ models and collider implications, Nucl. Phys. B 858 (2012) 468 [arXiv:1111.5021] [INSPIRE].CrossRefzbMATHGoogle Scholar
  130. [130]
    K.S. Babu, I. Gogoladze and S. Khan, Radiative Electroweak Symmetry Breaking in Standard Model Extensions, Phys. Rev. D 95 (2017) 095013 [arXiv:1612.05185] [INSPIRE].Google Scholar
  131. [131]
    T. Appelquist et al., Two-Color Gauge Theory with Novel Infrared Behavior, Phys. Rev. Lett. 112 (2014) 111601 [arXiv:1311.4889] [INSPIRE].CrossRefGoogle Scholar
  132. [132]
    V. Leino, K. Rummukainen, J.M. Suorsa, K. Tuominen and S. Tähtinen, Infrared fixed point of SU(2) gauge theory with six flavors, Phys. Rev. D 97 (2018) 114501 [arXiv:1707.04722] [INSPIRE].Google Scholar
  133. [133]
    C.-H. Lee and R.N. Mohapatra, Vector-Like Quarks and Leptons, SU(5) ⊗ SU(5) Grand Unification and Proton Decay, JHEP 02 (2017) 080 [arXiv:1611.05478] [INSPIRE].CrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • K. S. Babu
    • 1
    Email author
  • Bhaskar Dutta
    • 2
  • Rabindra N. Mohapatra
    • 3
  1. 1.Department of PhysicsOklahoma State UniversityStillwaterU.S.A.
  2. 2.Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics & AstronomyTexas A & M UniversityCollege StationU.S.A.
  3. 3.Maryland Center for Fundamental Physics, Department of PhysicsUniversity of MarylandCollege ParkU.S.A.

Personalised recommendations