Advertisement

Journal of High Energy Physics

, 2019:157 | Cite as

Prospects of searching for composite resonances at the LHC and beyond

  • Da Liu
  • Lian-Tao Wang
  • Ke-Pan XieEmail author
Open Access
Regular Article - Theoretical Physics
  • 18 Downloads

Abstract

Composite Higgs models predict the existence of resonances. We study in detail the collider phenomenology of both the vector and fermionic resonances, including the possibility of both of them being light and within the reach of the LHC. We present current constraints from di-boson, di-lepton resonance searches and top partner pair searches on a set of simplified benchmark models based on the minimal coset SO(5)/SO(4), and make projections for the reach of the HL-LHC. We find that the cascade decay channels for the vector resonances into top partners, or vice versa, can play an important role in the phenomenology of the models. We present a conservative estimate for their reach by using the same-sign di-lepton final states. As a simple extrapolation of our work, we also present the projected reach at the 27 TeV HE-LHC and a 100 TeV pp collider.

Keywords

Phenomenological Models 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    D.B. Kaplan, Flavor at SSC energies: A New mechanism for dynamically generated fermion masses, Nucl. Phys. B 365 (1991) 259 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    D.B. Kaplan and H. Georgi, SU(2) × U(1) Breaking by Vacuum Misalignment, Phys. Lett. B 136 (1984) 183 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    R. Contino, Y. Nomura and A. Pomarol, Higgs as a holographic pseudoGoldstone boson, Nucl. Phys. B 671 (2003) 148 [hep-ph/0306259] [INSPIRE].
  4. [4]
    K. Agashe, R. Contino and A. Pomarol, The Minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [INSPIRE].
  5. [5]
    R. Contino, L. Da Rold and A. Pomarol, Light custodians in natural composite Higgs models, Phys. Rev. D 75 (2007) 055014 [hep-ph/0612048] [INSPIRE].
  6. [6]
    F. Zimmermann, HE-LHC Overview, Parameters and Challenges, ICFA Beam Dyn. Newslett. 72 (2017) 138 [INSPIRE].Google Scholar
  7. [7]
    N. Arkani-Hamed, T. Han, M. Mangano and L.-T. Wang, Physics opportunities of a 100 TeV proton-proton collider, Phys. Rept. 652 (2016) 1 [arXiv:1511.06495] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    CEPC-SPPC Study Group collaboration, CEPC-SPPC Preliminary Conceptual Design Report. 1. Physics and Detector, IHEP-CEPC-DR-2015-01 [INSPIRE].
  9. [9]
    T. Golling et al., Physics at a 100 TeV pp collider: beyond the Standard Model phenomena, CERN Yellow Report (2017) 441 [arXiv:1606.00947] [INSPIRE].
  10. [10]
    R. Contino et al., Physics at a 100 TeV pp collider: Higgs and EW symmetry breaking studies, CERN Yellow Report (2017) 255 [arXiv:1606.09408] [INSPIRE].
  11. [11]
    ATLAS collaboration, Search for diboson resonances in hadronic final states in 79.8 fb −1 of pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2018-016.
  12. [12]
    CMS collaboration, Search for high mass resonances in dielectron final state, CMS-PAS-EXO-18-006.
  13. [13]
    CMS collaboration, Search for top quark partners with charge 5/3 in the same-sign dilepton and single-lepton final states in proton-proton collisions at \( \sqrt{s}=13 \) TeV, submitted to JHEP (2018) [arXiv:1810.03188] [INSPIRE].
  14. [14]
    D. Greco and D. Liu, Hunting composite vector resonances at the LHC: naturalness facing data, JHEP 12 (2014) 126 [arXiv:1410.2883] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    C. Niehoff, P. Stangl and D.M. Straub, Direct and indirect signals of natural composite Higgs models, JHEP 01 (2016) 119 [arXiv:1508.00569] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    J. Yepes and A. Zerwekh, Modelling top partner-vector resonance phenomenology, arXiv:1806.06694 [INSPIRE].
  17. [17]
    D. Barducci, A. Belyaev, S. De Curtis, S. Moretti and G.M. Pruna, Exploring Drell-Yan signals from the 4D Composite Higgs Model at the LHC, JHEP 04 (2013) 152 [arXiv:1210.2927] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    D. Barducci, Collider phenomenology of the 4D composite Higgs model, Ph.D. Thesis, Southampton U. (2014) [arXiv:1411.5800] [INSPIRE].
  19. [19]
    J. Yepes and A. Zerwekh, Top partner-resonance interplay in a composite Higgs framework, Int. J. Mod. Phys. A 33 (2018) 1841008 [arXiv:1711.10523] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    A. De Simone, O. Matsedonskyi, R. Rattazzi and A. Wulzer, A First Top Partner Hunters Guide, JHEP 04 (2013) 004 [arXiv:1211.5663] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    V. Sanz and J. Setford, Composite Higgs Models after Run 2, Adv. High Energy Phys. 2018 (2018) 7168480 [arXiv:1703.10190] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  22. [22]
    J. de Blas, O. Eberhardt and C. Krause, Current and Future Constraints on Higgs Couplings in the Nonlinear Effective Theory, JHEP 07 (2018) 048 [arXiv:1803.00939] [INSPIRE].CrossRefGoogle Scholar
  23. [23]
    R. Contino, D. Marzocca, D. Pappadopulo and R. Rattazzi, On the effect of resonances in composite Higgs phenomenology, JHEP 10 (2011) 081 [arXiv:1109.1570] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  24. [24]
    A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].
  25. [25]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].
  26. [26]
    M. Czakon and A. Mitov, Top++: A Program for the Calculation of the Top-Pair Cross-Section at Hadron Colliders, Comput. Phys. Commun. 185 (2014) 2930 [arXiv:1112.5675] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    M. Czakon, P. Fiedler and A. Mitov, Total Top-Quark Pair-Production Cross Section at Hadron Colliders Through O(α S4), Phys. Rev. Lett. 110 (2013) 252004 [arXiv:1303.6254] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    M. Czakon and A. Mitov, NNLO corrections to top pair production at hadron colliders: the quark-gluon reaction, JHEP 01 (2013) 080 [arXiv:1210.6832] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    M. Czakon and A. Mitov, NNLO corrections to top-pair production at hadron colliders: the all-fermionic scattering channels, JHEP 12 (2012) 054 [arXiv:1207.0236] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    P. Bärnreuther, M. Czakon and A. Mitov, Percent Level Precision Physics at the Tevatron: First Genuine NNLO QCD Corrections to \( q\overline{q}\to t\overline{t}+X \), Phys. Rev. Lett. 109 (2012) 132001 [arXiv:1204.5201] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    M. Cacciari, M. Czakon, M. Mangano, A. Mitov and P. Nason, Top-pair production at hadron colliders with next-to-next-to-leading logarithmic soft-gluon resummation, Phys. Lett. B 710 (2012) 612 [arXiv:1111.5869] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    D. Pappadopulo, A. Thamm, R. Torre and A. Wulzer, Heavy Vector Triplets: Bridging Theory and Data, JHEP 09 (2014) 060 [arXiv:1402.4431] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    S.S.D. Willenbrock and D.A. Dicus, Production of Heavy Quarks from W Gluon Fusion, Phys. Rev. D 34 (1986) 155 [INSPIRE].ADSGoogle Scholar
  34. [34]
    J. Li, D. Liu and J. Shu, Towards the fate of natural composite Higgs model through single tsearch at the 8 TeV LHC, JHEP 11 (2013) 047 [arXiv:1306.5841] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    J.A. Aguilar-Saavedra, R. Benbrik, S. Heinemeyer and M. Pérez-Victoria, Handbook of vectorlike quarks: Mixing and single production, Phys. Rev. D 88 (2013) 094010 [arXiv:1306.0572] [INSPIRE].ADSGoogle Scholar
  36. [36]
    J. Mrazek and A. Wulzer, A Strong Sector at the LHC: Top Partners in Same-Sign Dileptons, Phys. Rev. D 81 (2010) 075006 [arXiv:0909.3977] [INSPIRE].ADSGoogle Scholar
  37. [37]
    A. Azatov, M. Salvarezza, M. Son and M. Spannowsky, Boosting Top Partner Searches in Composite Higgs Models, Phys. Rev. D 89 (2014) 075001 [arXiv:1308.6601] [INSPIRE].ADSGoogle Scholar
  38. [38]
    M. Backović, T. Flacke, S.J. Lee and G. Perez, LHC Top Partner Searches Beyond the 2 TeV Mass Region, JHEP 09 (2015) 022 [arXiv:1409.0409] [INSPIRE].CrossRefGoogle Scholar
  39. [39]
    O. Matsedonskyi, G. Panico and A. Wulzer, On the Interpretation of Top Partners Searches, JHEP 12 (2014) 097 [arXiv:1409.0100] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    M. Backovic, T. Flacke, J.H. Kim and S.J. Lee, Search Strategies for TeV Scale Fermionic Top Partners with Charge 2/3, JHEP 04 (2016) 014 [arXiv:1507.06568] [INSPIRE].ADSGoogle Scholar
  41. [41]
    B. Gripaios, T. Müller, M.A. Parker and D. Sutherland, Search Strategies for Top Partners in Composite Higgs models, JHEP 08 (2014) 171 [arXiv:1406.5957] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    G. Brooijmans et al., Les Houches 2013: Physics at TeV Colliders: New Physics Working Group Report, arXiv:1405.1617 [INSPIRE].
  43. [43]
    A. Thamm, R. Torre and A. Wulzer, Future tests of Higgs compositeness: direct vs indirect, JHEP 07 (2015) 100 [arXiv:1502.01701] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    ATLAS collaboration, Search for new high-mass phenomena in the dilepton final state using 36 fb −1 of proton-proton collision data at \( \sqrt{s}=13 \) TeV with the ATLAS detector, JHEP 10 (2017) 182 [arXiv:1707.02424] [INSPIRE].
  45. [45]
    ATLAS collaboration, Search for a new heavy gauge boson resonance decaying into a lepton and missing transverse momentum in 79.8 fb −1 of pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS experiment, ATLAS-CONF-2018-017.
  46. [46]
    CMS collaboration, Search for high-mass resonances in final states with a lepton and missing transverse momentum at \( \sqrt{s}=13 \) TeV, JHEP 06 (2018) 128 [arXiv:1803.11133] [INSPIRE].
  47. [47]
    CMS collaboration, Search for a Wboson decaying to a τ lepton and a neutrino in proton-proton collisions at \( \sqrt{s}=13 \) TeV, CMS-PAS-EXO-17-008.
  48. [48]
    ATLAS collaboration, Search for new phenomena in dijet events using 37 fb −1 of pp collision data collected at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Rev. D 96 (2017) 052004 [arXiv:1703.09127] [INSPIRE].
  49. [49]
    CMS collaboration, Searches for dijet resonances in pp collisions at \( \sqrt{s}=13 \) TeV using the 2016 and 2017 datasets, CMS-PAS-EXO-17-026.
  50. [50]
    ATLAS collaboration, Search for resonances in the mass distribution of jet pairs with one or two jets identified as b-jets in proton-proton collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Rev. D 98 (2018) 032016 [arXiv:1805.09299] [INSPIRE].
  51. [51]
    ATLAS collaboration, Search for heavy particles decaying into top-quark pairs using lepton-plus-jets events in proton-proton collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Eur. Phys. J. C 78 (2018) 565 [arXiv:1804.10823] [INSPIRE].
  52. [52]
    CMS collaboration, Search for resonant \( \mathrm{t}\overline{\mathrm{t}} \) production in proton-proton collisions at \( \sqrt{s}=13 \) TeV, submitted to JHEP (2018) [arXiv:1810.05905] [INSPIRE].
  53. [53]
    ATLAS collaboration, Search for W′ → tb decays in the hadronic final state using pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Lett. B 781 (2018) 327 [arXiv:1801.07893] [INSPIRE].
  54. [54]
    ATLAS collaboration, Search for vector-boson resonances decaying to a top quark and bottom quark in the lepton plus jets final state in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Lett. B 788 (2019) 347 [arXiv:1807.10473] [INSPIRE].
  55. [55]
    CMS collaboration, Search for heavy resonances decaying to a top quark and a bottom quark in the lepton+jets final state in proton-proton collisions at 13 TeV, Phys. Lett. B 777 (2018)39 [arXiv:1708.08539] [INSPIRE].
  56. [56]
    CMS collaboration, Search for massive resonances decaying into WW, WZ, ZZ, qW and qZ with dijet final states at \( \sqrt{s}=13 \) TeV, Phys. Rev. D 97 (2018) 072006 [arXiv:1708.05379] [INSPIRE].
  57. [57]
    ATLAS collaboration, Search for WW/WZ resonance production in ℓνqq final states in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, JHEP 03 (2018) 042 [arXiv:1710.07235] [INSPIRE].
  58. [58]
    CMS collaboration, Search for a heavy resonance decaying to a pair of vector bosons in the lepton plus merged jet final state at \( \sqrt{s}=13 \) TeV, JHEP 05 (2018) 088 [arXiv:1802.09407] [INSPIRE].
  59. [59]
    ATLAS collaboration, Search for heavy resonances decaying into WW in the eνμν final state in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Eur. Phys. J. C 78 (2018) 24 [arXiv:1710.01123] [INSPIRE].
  60. [60]
    ATLAS collaboration, Searches for heavy ZZ and ZW resonances in the ℓℓqq and ννqq final states in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, JHEP 03 (2018) 009 [arXiv:1708.09638] [INSPIRE].
  61. [61]
    CMS collaboration, Search for a heavy resonance decaying into a Z boson and a Z or W boson in 22q final states at \( \sqrt{s}=13 \) TeV, JHEP 09 (2018) 101 [arXiv:1803.10093] [INSPIRE].
  62. [62]
    ATLAS collaboration, Search for resonant WZ production in the fully leptonic final state in proton-proton collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Lett. B 787 (2018)68 [arXiv:1806.01532] [INSPIRE].
  63. [63]
    CMS collaboration, Search for a heavy resonance decaying into a Z boson and a vector boson in the \( \nu \overline{\nu}\mathrm{q}\overline{\mathrm{q}} \) final state, JHEP 07 (2018) 075 [arXiv:1803.03838] [INSPIRE].
  64. [64]
    ATLAS collaboration, Search for heavy resonances decaying to a W or Z boson and a Higgs boson in the \( q{\overline{q}}^{\left(\prime \right)}b\overline{b} \) final state in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Lett. B 774 (2017) 494 [arXiv:1707.06958] [INSPIRE].
  65. [65]
    CMS collaboration, Search for heavy resonances that decay into a vector boson and a Higgs boson in hadronic final states at \( \sqrt{s}=13 \) TeV, Eur. Phys. J. C 77 (2017) 636 [arXiv:1707.01303] [INSPIRE].
  66. [66]
    ATLAS collaboration, Search for heavy resonances decaying into a W or Z boson and a Higgs boson in final states with leptons and b-jets in 36 fb −1 of \( \sqrt{s}=13 \) TeV pp collisions with the ATLAS detector, JHEP 03 (2018) 174 [Erratum ibid. 11 (2018) 051] [arXiv:1712.06518] [INSPIRE].
  67. [67]
    CMS collaboration, Search for heavy resonances decaying into a vector boson and a Higgs boson in final states with charged leptons, neutrinos and b quarks at \( \sqrt{s}=13 \) TeV, JHEP 11 (2018) 172 [arXiv:1807.02826] [INSPIRE].
  68. [68]
    CMS collaboration, Search for heavy resonances decaying into two Higgs bosons or into a Higgs boson and a W or Z boson in proton-proton collisions at 13 TeV, arXiv:1808.01365 [INSPIRE].
  69. [69]
    ATLAS collaboration, Combination of searches for heavy resonances decaying into bosonic and leptonic final states using 36 fb −1 of proton-proton collision data at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Rev. D 98 (2018) 052008 [arXiv:1808.02380] [INSPIRE].
  70. [70]
    CMS collaboration, Search for single production of a vector-like T quark decaying to a Z boson and a top quark in proton-proton collisions at \( \sqrt{s}=13 \) TeV, Phys. Lett. B 781 (2018) 574 [arXiv:1708.01062] [INSPIRE].
  71. [71]
    CMS collaboration, Search for a heavy resonance decaying to a top quark and a vector-like top quark in the lepton+jets final state, CMS-PAS-B2G-17-015.
  72. [72]
    ATLAS collaboration, Search for pair production of vector-like top quarks in events with one lepton, jets and missing transverse momentum in \( \sqrt{s}=13 \) TeV pp collisions with the ATLAS detector, JHEP 08 (2017) 052 [arXiv:1705.10751] [INSPIRE].
  73. [73]
    ATLAS collaboration, Search for pair production of up-type vector-like quarks and for four-top-quark events in final states with multiple b-jets with the ATLAS detector, JHEP 07 (2018) 089 [arXiv:1803.09678] [INSPIRE].
  74. [74]
    ATLAS collaboration, Search for pair production of heavy vector-like quarks decaying to high-p T W bosons and b quarks in the lepton-plus-jets final state in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, JHEP 10 (2017) 141 [arXiv:1707.03347] [INSPIRE].
  75. [75]
    CMS collaboration, Search for pair production of vector-like quarks in the \( bW\overline{\mathrm{b}}W \) channel from proton-proton collisions at \( \sqrt{s}=13 \) TeV, Phys. Lett. B 779 (2018) 82 [arXiv:1710.01539] [INSPIRE].
  76. [76]
    ATLAS collaboration, Search for pair production of heavy vector-like quarks decaying into high-p T W bosons and top quarks in the lepton-plus-jets final state in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, JHEP 08 (2018) 048 [arXiv:1806.01762] [INSPIRE].
  77. [77]
    CMS collaboration, Search for heavy vector-like quarks decaying to same-sign dileptons, CMS-PAS-B2G-16-019.
  78. [78]
    ATLAS collaboration, Combination of the searches for pair-produced vector-like partners of the third generation quarks at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2018-032.
  79. [79]
    ATLAS collaboration, Search for pair- and single-production of vector-like quarks in final states with at least one Z boson decaying into a pair of electrons or muons in pp collision data collected with the ATLAS detector at \( \sqrt{s}=13 \) TeV, Phys. Rev. D 98 (2018) 112010 [arXiv:1806.10555] [INSPIRE].
  80. [80]
    CMS collaboration, Search for vector-like T and B quark pairs in final states with leptons at \( \sqrt{s}=13 \) TeV, JHEP 08 (2018) 177 [arXiv:1805.04758] [INSPIRE].
  81. [81]
    ATLAS collaboration, Search for new phenomena in events with same-charge leptons and b-jets in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, JHEP 12 (2018) 039 [arXiv:1807.11883] [INSPIRE].
  82. [82]
    ATLAS collaboration, Search for pair production of heavy vector-like quarks decaying into hadronic final states in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Rev. D 98 (2018) 092005 [arXiv:1808.01771] [INSPIRE].
  83. [83]
    ATLAS collaboration, Combination of the searches for pair-produced vector-like partners of the third-generation quarks at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Rev. Lett. 121 (2018) 211801 [arXiv:1808.02343] [INSPIRE].
  84. [84]
    ATLAS collaboration, Search for single production of vector-like quarks decaying into Wb in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2016-072 (2016).
  85. [85]
    CMS collaboration, Search for single production of vector-like quarks decaying into a b quark and a W boson in proton-proton collisions at \( \sqrt{s}=13 \) TeV, Phys. Lett. B 772 (2017) 634 [arXiv:1701.08328] [INSPIRE].
  86. [86]
    CMS collaboration, Search for single production of vector-like quarks decaying to a top quark and a W boson in proton-proton collisions at \( \sqrt{s}=13 \) TeV, arXiv:1809.08597 [INSPIRE].
  87. [87]
    CMS collaboration, Search for physics beyond the standard model in events with two leptons of same sign, missing transverse momentum and jets in proton-proton collisions at \( \sqrt{s}=13 \) TeV, Eur. Phys. J. C 77 (2017) 578 [arXiv:1704.07323] [INSPIRE].
  88. [88]
    ATLAS collaboration, Search for supersymmetry in final states with two same-sign or three leptons and jets using 36 fb −1 of \( \sqrt{s}=13 \) TeV pp collision data with the ATLAS detector, JHEP 09 (2017) 084 [arXiv:1706.03731] [INSPIRE].
  89. [89]
    CMS collaboration, CMS at the High-Energy Frontier. Contribution to the Update of the European Strategy for Particle Physics, CMS-NOTE-2012-006.
  90. [90]
    ATLAS collaboration, Projections for measurements of Higgs boson cross sections, branching ratios and coupling parameters with the ATLAS detector at a HL-LHC, ATL-PHYS-PUB-2013-014.
  91. [91]
    S. Dawson et al., Working Group Report: Higgs Boson, in Proceedings, 2013 Community Summer Study on the Future of U.S. Particle Physics: Snowmass on the Mississippi (CSS2013), Minneapolis, MN, U.S.A., July 29–August 6, 2013 (2013) [arXiv:1310.8361] [INSPIRE].
  92. [92]
    R. Barbieri, A. Pomarol, R. Rattazzi and A. Strumia, Electroweak symmetry breaking after LEP-1 and LEP-2, Nucl. Phys. B 703 (2004) 127 [hep-ph/0405040] [INSPIRE].
  93. [93]
    G.F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The Strongly-Interacting Light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [INSPIRE].
  94. [94]
    CMS collaboration, Search for single production of vector-like quarks decaying into final states with a Z boson and a top or a bottom quark, CMS-PAS-B2G-16-001.
  95. [95]
    M. Backović, T. Flacke, B. Jain and S.J. Lee, LHC vector resonance searches in the \( t\overline{t}Z \) final state, JHEP 03 (2017) 127 [arXiv:1610.08810] [INSPIRE].ADSCrossRefGoogle Scholar
  96. [96]
    N. Vignaroli, New Wsignals at the LHC, Phys. Rev. D 89 (2014) 095027 [arXiv:1404.5558] [INSPIRE].ADSGoogle Scholar
  97. [97]
    D. Barducci and C. Delaunay, Bounding wide composite vector resonances at the LHC, JHEP 02 (2016) 055 [arXiv:1511.01101] [INSPIRE].ADSCrossRefGoogle Scholar
  98. [98]
    M. Low, A. Tesi and L.-T. Wang, Composite spin-1 resonances at the LHC, Phys. Rev. D 92 (2015) 085019 [arXiv:1507.07557] [INSPIRE].ADSGoogle Scholar
  99. [99]
    C. Dennis, M. Karagoz, G. Servant and J. Tseng, Multi-W events at LHC from a warped extra dimension with custodial symmetry, hep-ph/0701158 [INSPIRE].
  100. [100]
    R. Contino and G. Servant, Discovering the top partners at the LHC using same-sign dilepton final states, JHEP 06 (2008) 026 [arXiv:0801.1679] [INSPIRE].ADSCrossRefGoogle Scholar
  101. [101]
    Particle Data Group collaboration, Review of Particle Physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].
  102. [102]
    D. Liu and R. Mahbubani, Probing top-antitop resonances with \( t\overline{t} \) scattering at LHC14, JHEP 04 (2016) 116 [arXiv:1511.09452] [INSPIRE].ADSCrossRefGoogle Scholar
  103. [103]
    N. Gutierrez Ortiz, J. Ferrando, D. Kar and M. Spannowsky, Reconstructing singly produced top partners in decays to Wb, Phys. Rev. D 90 (2014) 075009 [arXiv:1403.7490] [INSPIRE].ADSGoogle Scholar
  104. [104]
    Y.-B. Liu and Y.-Q. Li, Search for single production of the vector-like top partner at the 14 TeV LHC, Eur. Phys. J. C 77 (2017) 654 [arXiv:1709.06427] [INSPIRE].ADSCrossRefGoogle Scholar
  105. [105]
    Y.-B. Liu, Search for single production of the heavy vectorlike T quark with Tth and hγγ at the high-luminosity LHC, Phys. Rev. D 95 (2017) 035013 [arXiv:1612.05851] [INSPIRE].
  106. [106]
    M. Backović, T. Flacke, J.H. Kim and S.J. Lee, Discovering heavy new physics in boosted Z channels: Zl + l vs \( Z\to \nu \overline{\nu} \), Phys. Rev. D 92 (2015) 011701 [arXiv:1501.07456] [INSPIRE].ADSGoogle Scholar
  107. [107]
    J. Reuter and M. Tonini, Top Partner Discovery in the TtZ channel at the LHC, JHEP 01 (2015) 088 [arXiv:1409.6962] [INSPIRE].ADSCrossRefGoogle Scholar
  108. [108]
    G. Panico and A. Wulzer, The Composite Nambu-Goldstone Higgs, Lect. Notes Phys. 913 (2016) 1 [arXiv:1506.01961] [INSPIRE].
  109. [109]
    S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 1., Phys. Rev. 177 (1969) 2239 [INSPIRE].
  110. [110]
    C.G. Callan Jr., S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 2., Phys. Rev. 177 (1969) 2247 [INSPIRE].
  111. [111]
    D. Ghosh, M. Salvarezza and F. Senia, Extending the Analysis of Electroweak Precision Constraints in Composite Higgs Models, Nucl. Phys. B 914 (2017) 346 [arXiv:1511.08235] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  112. [112]
    K. Agashe, R. Contino, L. Da Rold and A. Pomarol, A Custodial symmetry for \( Zb\overline{b} \), Phys. Lett. B 641 (2006) 62 [hep-ph/0605341] [INSPIRE].
  113. [113]
    C. Quigg, LHC Physics Potential versus Energy, arXiv:0908.3660 [INSPIRE].
  114. [114]
    I. Hinchliffe, A. Kotwal, M.L. Mangano, C. Quigg and L.-T. Wang, Luminosity goals for a 100-TeV pp collider, Int. J. Mod. Phys. A 30 (2015) 1544002 [arXiv:1504.06108] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.High Energy Physics DivisionArgonne National LaboratoryArgonneU.S.A.
  2. 2.Enrico Fermi InstituteThe University of ChicagoChicagoU.S.A.
  3. 3.Department of PhysicsThe University of ChicagoChicagoU.S.A.
  4. 4.Kavli Institute for Cosmological PhysicsThe University of ChicagoChicagoU.S.A.
  5. 5.Center for Theoretical Physics, Department of Physics and AstronomySeoul National UniversitySeoulKorea
  6. 6.Department of Physics and State Key Laboratory of Nuclear Physics and TechnologyPeking UniversityBeijingChina

Personalised recommendations