Advertisement

Journal of High Energy Physics

, 2019:156 | Cite as

Holographic turbulence in Einstein-Gauss-Bonnet gravity at large D

  • Bin Chen
  • Peng-Cheng LiEmail author
  • Yu Tian
  • Cheng-Yong Zhang
Open Access
Regular Article - Theoretical Physics
  • 26 Downloads

Abstract

We study the holographic hydrodynamics in the Einstein-Gauss-Bonnet (EGB) gravity in the framework of the large D expansion. We find that the large D EGB equations can be interpreted as the hydrodynamic equations describing the conformal fluid. These fluid equations are truncated at the second order of the derivative expansion, similar to the Einstein gravity at large D. From the analysis of the fluid flows, we find that the fluid equations can be taken as a variant of the compressible version of the non-relativistic Navier-Stokes equations. Particularly, in the limit of small Mach number, these equations could be cast into the form of the incompressible Navier-Stokes equations with redefined Reynolds number and Mach number. By using numerical simulation, we find that the EGB holographic turbulence shares similar qualitative feature as the turbulence from the Einstein gravity, despite the presence of two extra terms in the equations of motion. We analyze the effect of the GB term on the holographic turbulence in detail.

Keywords

AdS-CFT Correspondence Black Holes 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    R. Emparan, R. Suzuki and K. Tanabe, The large D limit of General Relativity, JHEP 06 (2013) 009 [arXiv:1302.6382] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    R. Emparan, R. Suzuki and K. Tanabe, Instability of rotating black holes: large D analysis, JHEP 06 (2014) 106 [arXiv:1402.6215] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    R. Emparan, R. Suzuki and K. Tanabe, Decoupling and non-decoupling dynamics of large D black holes, JHEP 07 (2014) 113 [arXiv:1406.1258] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  4. [4]
    R. Emparan, R. Suzuki and K. Tanabe, Quasinormal modes of (Anti-)de Sitter black holes in the 1/D expansion, JHEP 04 (2015) 085 [arXiv:1502.02820] [INSPIRE].
  5. [5]
    R. Emparan, T. Shiromizu, R. Suzuki, K. Tanabe and T. Tanaka, Effective theory of Black Holes in the 1/D expansion, JHEP 06 (2015) 159 [arXiv:1504.06489] [INSPIRE].
  6. [6]
    R. Suzuki and K. Tanabe, Stationary black holes: Large D analysis, JHEP 09 (2015) 193 [arXiv:1505.01282] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    R. Suzuki and K. Tanabe, Non-uniform black strings and the critical dimension in the 1/D expansion, JHEP 10 (2015) 107 [arXiv:1506.01890] [INSPIRE].
  8. [8]
    R. Emparan, R. Suzuki and K. Tanabe, Evolution and End Point of the Black String Instability: Large D Solution, Phys. Rev. Lett. 115 (2015) 091102 [arXiv:1506.06772] [INSPIRE].
  9. [9]
    K. Tanabe, Black rings at large D, JHEP 02 (2016) 151 [arXiv:1510.02200] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    B. Chen, P.-C. Li and Z.-z. Wang, Charged Black Rings at large D, JHEP 04 (2017) 167 [arXiv:1702.00886] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  11. [11]
    K. Tanabe, Instability of the de Sitter Reissner-Nordstrom black hole in the 1/D expansion, Class. Quant. Grav. 33 (2016) 125016 [arXiv:1511.06059] [INSPIRE].
  12. [12]
    M. Rozali and A. Vincart-Emard, On Brane Instabilities in the Large D Limit, JHEP 08 (2016) 166 [arXiv:1607.01747] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    U. Miyamoto, Non-linear perturbation of black branes at large D, JHEP 06 (2017) 033 [arXiv:1705.00486] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    R. Emparan, R. Luna, M. Martínez, R. Suzuki and K. Tanabe, Phases and Stability of Non-Uniform Black Strings, JHEP 05 (2018) 104 [arXiv:1802.08191] [INSPIRE].
  15. [15]
    S. Bhattacharyya, A. De, S. Minwalla, R. Mohan and A. Saha, A membrane paradigm at large D, JHEP 04 (2016) 076 [arXiv:1504.06613] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  16. [16]
    S. Bhattacharyya, M. Mandlik, S. Minwalla and S. Thakur, A Charged Membrane Paradigm at Large D, JHEP 04 (2016) 128 [arXiv:1511.03432] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  17. [17]
    Y. Dandekar, A. De, S. Mazumdar, S. Minwalla and A. Saha, The large D black hole Membrane Paradigm at first subleading order, JHEP 12 (2016) 113 [arXiv:1607.06475] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    Y. Dandekar, S. Mazumdar, S. Minwalla and A. Saha, Unstable ‘black branes’ from scaled membranes at large D, JHEP 12 (2016) 140 [arXiv:1609.02912] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    S. Bhattacharyya, P. Biswas, B. Chakrabarty, Y. Dandekar and A. Dinda, The large D black hole dynamics in AdS/dS backgrounds, JHEP 10 (2018) 033 [arXiv:1704.06076] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  20. [20]
    Y. Dandekar, S. Kundu, S. Mazumdar, S. Minwalla, A. Mishra and A. Saha, An Action for and Hydrodynamics from the improved Large D membrane, JHEP 09 (2018) 137 [arXiv:1712.09400] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    T. Damour, Black Hole Eddy Currents, Phys. Rev. D 18 (1978) 3598 [INSPIRE].
  22. [22]
    K.S. Thorne, R.H. Price and D.A. Macdonald, Black Holes: The Membrane Paradigm, Yale University Press, New Haven U.S.A. (1986).Google Scholar
  23. [23]
    R. Emparan, K. Izumi, R. Luna, R. Suzuki and K. Tanabe, Hydro-elastic Complementarity in Black Branes at large D, JHEP 06 (2016) 117 [arXiv:1602.05752] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    S. Bhattacharyya, V.E. Hubeny, S. Minwalla and M. Rangamani, Nonlinear Fluid Dynamics from Gravity, JHEP 02 (2008) 045 [arXiv:0712.2456] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    A. Adams, P.M. Chesler and H. Liu, Holographic turbulence, Phys. Rev. Lett. 112 (2014) 151602 [arXiv:1307.7267] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    F. Carrasco, L. Lehner, R.C. Myers, O. Reula and A. Singh, Turbulent flows for relativistic conformal fluids in 2 + 1 dimensions, Phys. Rev. D 86 (2012) 126006 [arXiv:1210.6702] [INSPIRE].
  27. [27]
    S.R. Green, F. Carrasco and L. Lehner, Holographic Path to the Turbulent Side of Gravity, Phys. Rev. X 4 (2014) 011001 [arXiv:1309.7940] [INSPIRE].
  28. [28]
    M. Rozali, E. Sabag and A. Yarom, Holographic Turbulence in a Large Number of Dimensions, JHEP 04 (2018) 065 [arXiv:1707.08973] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    B. Zwiebach, Curvature Squared Terms and String Theories, Phys. Lett. B 156 (1985) 315 [INSPIRE].
  30. [30]
    D.G. Boulware and S. Deser, String Generated Gravity Models, Phys. Rev. Lett. 55 (1985) 2656 [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    P. Kovtun, D.T. Son and A.O. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett. 94 (2005) 111601 [hep-th/0405231] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    M. Brigante, H. Liu, R.C. Myers, S. Shenker and S. Yaida, Viscosity Bound Violation in Higher Derivative Gravity, Phys. Rev. D 77 (2008) 126006 [arXiv:0712.0805] [INSPIRE].
  33. [33]
    M. Brigante, H. Liu, R.C. Myers, S. Shenker and S. Yaida, The Viscosity Bound and Causality Violation, Phys. Rev. Lett. 100 (2008) 191601 [arXiv:0802.3318] [INSPIRE].
  34. [34]
    D.M. Hofman and J. Maldacena, Conformal collider physics: Energy and charge correlations, JHEP 05 (2008) 012 [arXiv:0803.1467] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    A. Buchel and R.C. Myers, Causality of Holographic Hydrodynamics, JHEP 08 (2009) 016 [arXiv:0906.2922] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    D.M. Hofman, Higher Derivative Gravity, Causality and Positivity of Energy in a UV complete QFT, Nucl. Phys. B 823 (2009) 174 [arXiv:0907.1625] [INSPIRE].
  37. [37]
    A. Buchel, J. Escobedo, R.C. Myers, M.F. Paulos, A. Sinha and M. Smolkin, Holographic GB gravity in arbitrary dimensions, JHEP 03 (2010) 111 [arXiv:0911.4257] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  38. [38]
    X.O. Camanho, J.D. Edelstein, J. Maldacena and A. Zhiboedov, Causality Constraints on Corrections to the Graviton Three-Point Coupling, JHEP 02 (2016) 020 [arXiv:1407.5597] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    B. Chen, Z.-Y. Fan, P. Li and W. Ye, Quasinormal modes of Gauss-Bonnet black holes at large D, JHEP 01 (2016) 085 [arXiv:1511.08706] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    B. Chen and P.-C. Li, Static Gauss-Bonnet Black Holes at Large D, JHEP 05 (2017) 025 [arXiv:1703.06381] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  41. [41]
    B. Chen, P.-C. Li and C.-Y. Zhang, Einstein-Gauss-Bonnet Black Strings at Large D, JHEP 10 (2017) 123 [arXiv:1707.09766] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    R.-G. Cai, Gauss-Bonnet black holes in AdS spaces, Phys. Rev. D 65 (2002) 084014 [hep-th/0109133] [INSPIRE].
  43. [43]
    P. Davidson, Turbulence: an introduction for scientists and engineers, Oxford University Press (2015).Google Scholar
  44. [44]
    G.K. Batchelor, Computation of the energy spectrum in homogeneous two-dimensional turbulence, Phys. Fluids 12 (1969) II-233.Google Scholar
  45. [45]
    R.H. Kraichnan, Inertial ranges in two-dimensional turbulence, Phys. Fluids 10 (1967) 1417.ADSMathSciNetCrossRefGoogle Scholar
  46. [46]
    P.D. Mininni and A. Pouquet, Inverse cascade behavior in freely decaying two-dimensional fluid turbulence, Phys. Rev. E 87 (2013) 033002 [arXiv:1302.2988].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Bin Chen
    • 1
    • 2
    • 3
  • Peng-Cheng Li
    • 4
    Email author
  • Yu Tian
    • 5
    • 6
    • 7
  • Cheng-Yong Zhang
    • 8
  1. 1.Department of Physics and State Key Laboratory of Nuclear Physics and TechnologyPeking UniversityBeijingChina
  2. 2.Collaborative Innovation Center of Quantum MatterBeijingChina
  3. 3.Center for High Energy PhysicsPeking UniversityBeijingChina
  4. 4.School of Physics and AstronomySun Yat-sen UniversityZhuhaiChina
  5. 5.School of PhysicsUniversity of Chinese Academy of SciencesBeijingChina
  6. 6.Institute of Theoretical PhysicsChinese Academy of SciencesBeijingChina
  7. 7.Center for Gravitation and Cosmology, College of Physical Science and TechnologyYangzhou UniversityYangzhouChina
  8. 8.Department of Physics and Center for Field Theory and Particle PhysicsFudan UniversityShanghaiChina

Personalised recommendations