Advertisement

Journal of High Energy Physics

, 2019:153 | Cite as

Subleading soft theorem for arbitrary number of external soft photons and gravitons

  • Sayali Atul Bhatkar
  • Biswajit SahooEmail author
Open Access
Regular Article - Theoretical Physics
  • 15 Downloads

Abstract

We obtain the subleading soft theorem for a generic theory of quantum gravity, for arbitrary number of soft photons and gravitons and for arbitrary number of finite energy particles with arbitrary mass and spin when all the soft particles are soft in the same rate. This result is valid at tree level for spacetime dimensions equal to four and five and to all loop orders in spacetime dimensions greater than five. We verify that in classical limit, low energy photon and graviton radiation decouple from each other.

Keywords

Scattering Amplitudes Effective Field Theories String Field Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    M. Gell-Mann and M.L. Goldberger, Scattering of low-energy photons by particles of spin 1/2, Phys. Rev. 96 (1954) 1433 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  2. [2]
    F.E. Low, Scattering of light of very low frequency by systems of spin 1/2, Phys. Rev. 96 (1954) 1428 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  3. [3]
    F.E. Low, Bremsstrahlung of very low-energy quanta in elementary particle collisions, Phys. Rev. 110 (1958) 974 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  4. [4]
    S. Saito, Low-energy theorem for Compton scattering, Phys. Rev. 184 (1969) 1894 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    T.H. Burnett and N.M. Kroll, Extension of the low soft photon theorem, Phys. Rev. Lett. 20 (1968) 86 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    J.S. Bell and R. Van Royen, On the low-burnett-kroll theorem for soft-photon emission, Nuovo Cim. A 60 (1969) 62 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    V. Del Duca, High-energy Bremsstrahlung theorems for soft photons, Nucl. Phys. B 345 (1990) 369 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    S. Weinberg, Photons and gravitons in s matrix theory: derivation of charge conservation and equality of gravitational and inertial mass, Phys. Rev. 135 (1964) B1049 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    S. Weinberg, Infrared photons and gravitons, Phys. Rev. 140 (1965) B516 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    D.J. Gross and R. Jackiw, Low-energy theorem for graviton scattering, Phys. Rev. 166 (1968) 1287 [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    R. Jackiw, Low-energy theorems for massless bosons: photons and gravitons, Phys. Rev. 168 (1968) 1623 [INSPIRE].
  12. [12]
    C.D. White, Factorization properties of soft graviton amplitudes, JHEP 05 (2011) 060 [arXiv:1103.2981] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    F. Cachazo and A. Strominger, Evidence for a New Soft Graviton Theorem, arXiv:1404.4091 [INSPIRE].
  14. [14]
    B.U.W. Schwab and A. Volovich, Subleading soft theorem in arbitrary dimensions from scattering equations, Phys. Rev. Lett. 113 (2014) 101601 [arXiv:1404.7749] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    Z. Bern, S. Davies and J. Nohle, On loop corrections to subleading soft behavior of gluons and gravitons, Phys. Rev. D 90 (2014) 085015 [arXiv:1405.1015] [INSPIRE].ADSGoogle Scholar
  16. [16]
    S. He, Y.-t. Huang and C. Wen, Loop corrections to soft theorems in gauge theories and gravity, JHEP 12 (2014) 115 [arXiv:1405.1410] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    A.J. Larkoski, Conformal invariance of the subleading soft theorem in gauge theory, Phys. Rev. D 90 (2014) 087701 [arXiv:1405.2346] [INSPIRE].ADSGoogle Scholar
  18. [18]
    F. Cachazo and E.Y. Yuan, Are soft theorems renormalized?, arXiv:1405.3413 [INSPIRE].
  19. [19]
    N. Afkhami-Jeddi, Soft graviton theorem in arbitrary dimensions, arXiv:1405.3533 [INSPIRE].
  20. [20]
    J. Broedel, M. de Leeuw, J. Plefka and M. Rosso, Constraining subleading soft gluon and graviton theorems, Phys. Rev. D 90 (2014) 065024 [arXiv:1406.6574] [INSPIRE].ADSGoogle Scholar
  21. [21]
    Z. Bern, S. Davies, P. Di Vecchia and J. Nohle, Low-energy behavior of gluons and gravitons from gauge invariance, Phys. Rev. D 90 (2014) 084035 [arXiv:1406.6987] [INSPIRE].ADSGoogle Scholar
  22. [22]
    C.D. White, Diagrammatic insights into next-to-soft corrections, Phys. Lett. B 737 (2014) 216 [arXiv:1406.7184] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  23. [23]
    M. Zlotnikov, Sub-sub-leading soft-graviton theorem in arbitrary dimension, JHEP 10 (2014) 148 [arXiv:1407.5936] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    C. Kalousios and F. Rojas, Next to subleading soft-graviton theorem in arbitrary dimensions, JHEP 01 (2015) 107 [arXiv:1407.5982] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    Y.-J. Du, B. Feng, C.-H. Fu and Y. Wang, Note on soft graviton theorem by KLT relation, JHEP 11 (2014) 090 [arXiv:1408.4179] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    D. Bonocore et al., The method of regions and next-to-soft corrections in Drell-Yan production, Phys. Lett. B 742 (2015) 375 [arXiv:1410.6406] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  27. [27]
    A. Sabio Vera and M.A. Vazquez-Mozo, The double copy structure of soft gravitons, JHEP 03 (2015) 070 [arXiv:1412.3699] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    A.E. Lipstein, Soft theorems from conformal field theory, JHEP 06 (2015) 166 [arXiv:1504.01364] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    S.D. Alston, D.C. Dunbar and W.B. Perkins, n-point amplitudes with a single negative-helicity graviton, Phys. Rev. D 92 (2015) 065024 [arXiv:1507.08882] [INSPIRE].
  30. [30]
    Y.-t. Huang and C. Wen, Soft theorems from anomalous symmetries, JHEP 12 (2015) 143 [arXiv:1509.07840] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  31. [31]
    J. Rao and B. Feng, Note on identities inspired by new soft theorems, JHEP 04 (2016) 173 [arXiv:1604.00650] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  32. [32]
    F. Cachazo, P. Cha and S. Mizera, Extensions of theories from soft limits, JHEP 06 (2016) 170 [arXiv:1604.03893] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    A. Luna, S. Melville, S.G. Naculich and C.D. White, Next-to-soft corrections to high energy scattering in QCD and gravity, JHEP 01 (2017) 052 [arXiv:1611.02172] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    H. Elvang, C.R.T. Jones and S.G. Naculich, Soft photon and graviton theorems in effective field theory, Phys. Rev. Lett. 118 (2017) 231601 [arXiv:1611.07534] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    C. Cheung, K. Kampf, J. Novotny, C.-H. Shen and J. Trnka, A Periodic Table of Effective Field Theories, JHEP 02 (2017) 020 [arXiv:1611.03137] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    A. Strominger, On BMS invariance of gravitational scattering, JHEP 07 (2014) 152 [arXiv:1312.2229] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  37. [37]
    T. He, V. Lysov, P. Mitra and A. Strominger, BMS supertranslations and Weinbergs soft graviton theorem, JHEP 05 (2015) 151 [arXiv:1401.7026] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    A. Strominger and A. Zhiboedov, Gravitational memory, BMS supertranslations and soft theorems, JHEP 01 (2016) 086 [arXiv:1411.5745] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    S.G. Avery and B.U.W. Schwab, Burg-Metzner-Sachs symmetry, string theory and soft theorems, Phys. Rev. D 93 (2016) 026003 [arXiv:1506.05789] [INSPIRE].ADSMathSciNetGoogle Scholar
  40. [40]
    M. Campiglia and A. Laddha, Asymptotic symmetries of gravity and soft theorems for massive particles, JHEP 12 (2015) 094 [arXiv:1509.01406] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  41. [41]
    M. Campiglia and A. Laddha, Sub-subleading soft gravitons: new symmetries of quantum gravity?, Phys. Lett. B 764 (2017) 218 [arXiv:1605.09094] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  42. [42]
    M. Campiglia and A. Laddha, Sub-subleading soft gravitons and large diffeomorphisms, JHEP 01 (2017) 036 [arXiv:1608.00685] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  43. [43]
    E. Conde and P. Mao, BMS supertranslations and not so soft gravitons, JHEP 05 (2017) 060 [arXiv:1612.08294] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    T. He, D. Kapec, A.-M. Raclariu and A. Strominger, Loop-corrected Virasoro symmetry of 4D quantum gravity, JHEP 08 (2017) 050 [arXiv:1701.00496] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    M. Asorey, A.P. Balachandran, F. Lizzi and G. Marmo, Equations of motion as constraints: superselection rules, Ward identities, JHEP 03 (2017) 136 [arXiv:1612.05886] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    A. Strominger, Lectures on the infrared structure of gravity and gauge theory, arXiv:1703.05448 [INSPIRE].
  47. [47]
    T. He, P. Mitra, A.P. Porfyriadis and A. Strominger, New symmetries of massless QED, JHEP 10 (2014) 112 [arXiv:1407.3789] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    D. Kapec, M. Pate and A. Strominger, New symmetries of QED, Adv. Theor. Math. Phys. 21 (2017) 1769 [arXiv:1506.02906] [INSPIRE].
  49. [49]
    D. Kapec, V. Lysov and A. Strominger, Asymptotic symmetries of massless QED in even dimensions, Adv. Theor. Math. Phys. 21 (2017) 1747 [arXiv:1412.2763] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  50. [50]
    V. Lysov, S. Pasterski and A. Strominger, Lows subleading soft theorem as a symmetry of QED, Phys. Rev. Lett. 113 (2014) 111601 [arXiv:1407.3814] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    A. Laddha and P. Mitra, Asymptotic symmetries and subleading soft photon theorem in effective field theories, JHEP 05 (2018) 132 [arXiv:1709.03850] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  52. [52]
    M. Campiglia and A. Laddha, Subleading soft photons and large gauge transformations, JHEP 11 (2016) 012 [arXiv:1605.09677] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  53. [53]
    M. Campiglia and A. Laddha, Asymptotic symmetries of QED and Weinbergs soft photon theorem, JHEP 07 (2015) 115 [arXiv:1505.05346] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  54. [54]
    E. Conde and P. Mao, Remarks on asymptotic symmetries and the subleading soft photon theorem, Phys. Rev. D 95 (2017) 021701 [arXiv:1605.09731] [INSPIRE].ADSGoogle Scholar
  55. [55]
    H. Hirai and S. Sugishita, Conservation laws from asymptotic symmetry and subleading charges in QED, JHEP 07 (2018) 122 [arXiv:1805.05651] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  56. [56]
    M. Ademollo et al., Soft dilations and scale renormalization in dual theories, Nucl. Phys. B 94 (1975) 221 [INSPIRE].
  57. [57]
    J.A. Shapiro, On the Renormalization of Dual Models, Phys. Rev. D 11 (1975) 2937 [INSPIRE].ADSGoogle Scholar
  58. [58]
    B.U.W. Schwab, Subleading soft factor for string disk amplitudes, JHEP 08 (2014) 062 [arXiv:1406.4172] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  59. [59]
    M. Bianchi, S. He, Y.-t. Huang and C. Wen, More on soft theorems: trees, loops and strings, Phys. Rev. D 92 (2015) 065022 [arXiv:1406.5155] [INSPIRE].ADSMathSciNetGoogle Scholar
  60. [60]
    B.U.W. Schwab, A note on soft factors for closed string scattering, JHEP 03 (2015) 140 [arXiv:1411.6661] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  61. [61]
    P. Di Vecchia, R. Marotta and M. Mojaza, Soft theorem for the graviton, dilaton and the Kalb-Ramond field in the bosonic string, JHEP 05 (2015) 137 [arXiv:1502.05258] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  62. [62]
    M. Bianchi and A.L. Guerrieri, On the soft limit of open string disk amplitudes with massive states, JHEP 09 (2015) 164 [arXiv:1505.05854] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  63. [63]
    A.L. Guerrieri, Soft behavior of string amplitudes with external massive states, Nuovo Cim. C 39 (2016) 221 [arXiv:1507.08829] [INSPIRE].ADSGoogle Scholar
  64. [64]
    P. Di Vecchia, R. Marotta and M. Mojaza, Soft theorems from string theory, Fortsch. Phys. 64 (2016) 389 [arXiv:1511.04921] [INSPIRE].
  65. [65]
    M. Bianchi and A.L. Guerrieri, On the soft limit of closed string amplitudes with massive states, Nucl. Phys. B 905 (2016) 188 [arXiv:1512.00803] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  66. [66]
    M. Bianchi and A.L. Guerrieri, On the soft limit of tree-level string amplitudes, arXiv:1601.03457 [INSPIRE].
  67. [67]
    P. Di Vecchia, R. Marotta and M. Mojaza, Subsubleading soft theorems of gravitons and dilatons in the bosonic string, JHEP 06 (2016) 054 [arXiv:1604.03355] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  68. [68]
    P. Di Vecchia, R. Marotta and M. Mojaza, Multiloop soft theorem for gravitons and dilatons in the bosonic string, JHEP 01 (2019) 038 [arXiv:1808.04845] [INSPIRE].CrossRefGoogle Scholar
  69. [69]
    P. Di Vecchia, R. Marotta and M. Mojaza, Soft behavior of a closed massless state in superstring and universality in the soft behavior of the dilaton, JHEP 12 (2016) 020 [arXiv:1610.03481] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  70. [70]
    A. Sen, Soft theorems in superstring theory, JHEP 06 (2017) 113 [arXiv:1702.03934] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  71. [71]
    A. Sen, Subleading soft graviton theorem for loop amplitudes, JHEP 11 (2017) 123 [arXiv:1703.00024] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  72. [72]
    F. Cachazo, S. He and E.Y. Yuan, New double soft emission theorems, Phys. Rev. D 92 (2015) 065030 [arXiv:1503.04816] [INSPIRE].
  73. [73]
    T. Klose et al., Double-Soft Limits of Gluons and Gravitons, JHEP 07 (2015) 135 [arXiv:1504.05558] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  74. [74]
    A. Volovich, C. Wen and M. Zlotnikov, Double soft theorems in gauge and string theories, JHEP 07 (2015) 095 [arXiv:1504.05559] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  75. [75]
    P. Di Vecchia, R. Marotta and M. Mojaza, Double-soft behavior for scalars and gluons from string theory, JHEP 12 (2015) 150 [arXiv:1507.00938] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  76. [76]
    S. He, Z. Liu and J.-B. Wu, Scattering equations, twistor-string formulas and double-soft limits in four dimensions, JHEP 07 (2016) 060 [arXiv:1604.02834] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  77. [77]
    P. Di Vecchia, R. Marotta and M. Mojaza, Double-soft behavior of the dilaton of spontaneously broken conformal invariance, JHEP 09 (2017) 001 [arXiv:1705.06175] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  78. [78]
    A.P. Saha, Double soft theorem for perturbative gravity, JHEP 09 (2016) 165 [arXiv:1607.02700] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  79. [79]
    A.P. Saha, Double soft limit of the graviton amplitude from the Cachazo-He-Yuan formalism, Phys. Rev. D 96 (2017) 045002 [arXiv:1702.02350] [INSPIRE].ADSMathSciNetGoogle Scholar
  80. [80]
    S. Chakrabarti et al., Testing subleading multiple soft graviton theorem for CHY prescription, JHEP 01 (2018) 090 [arXiv:1709.07883] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  81. [81]
    A. Laddha and A. Sen, Sub-subleading Soft Graviton Theorem in Generic Theories of Quantum Gravity, JHEP 10 (2017) 065 [arXiv:1706.00759] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  82. [82]
    S. Chakrabarti et al., Subleading soft theorem for multiple soft gravitons, JHEP 12 (2017) 150 [arXiv:1707.06803] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  83. [83]
    A.H. Anupam, A. Kundu and K. Ray, Double soft graviton theorems and Bondi-Metzner-Sachs symmetries, Phys. Rev. D 97 (2018) 106019 [arXiv:1803.03023] [INSPIRE].ADSGoogle Scholar
  84. [84]
    J. Distler, R. Flauger and B. Horn, Double-soft graviton amplitudes and the extended BMS charge algebra, arXiv:1808.09965 [INSPIRE].
  85. [85]
    A. Laddha and A. Sen, Gravity waves from soft theorem in general dimensions, JHEP 09 (2018) 105 [arXiv:1801.07719] [INSPIRE].
  86. [86]
    A. Laddha and A. Sen, Logarithmic terms in the soft expansion in four dimensions, JHEP 10 (2018) 056 [arXiv:1804.09193] [INSPIRE].
  87. [87]
    A. Laddha and A. Sen, Observational signature of the logarithmic terms in the soft graviton theorem, arXiv:1806.01872 [INSPIRE].
  88. [88]
    B. Sahoo and A. Sen, Classical and quantum results on logarithmic terms in the soft theorem in four dimensions, arXiv:1808.03288 [INSPIRE].
  89. [89]
    D.R. Yennie, S.C. Frautschi and H. Suura, The infrared divergence phenomena and high-energy processes, Annals Phys. 13 (1961) 379 [INSPIRE].ADSCrossRefGoogle Scholar
  90. [90]
    G. Grammer Jr. and D.R. Yennie, Improved treatment for the infrared divergence problem in quantum electrodynamics, Phys. Rev. D 8 (1973) 4332 [INSPIRE].ADSGoogle Scholar
  91. [91]
    F. Cachazo, S. He and E.Y. Yuan, Scattering equations and Kawai-Lewellen-Tye orthogonality, Phys. Rev. D 90 (2014) 065001 [arXiv:1306.6575] [INSPIRE].ADSGoogle Scholar
  92. [92]
    F. Cachazo, S. He and E.Y. Yuan, Scattering of massless particles in arbitrary dimensions, Phys. Rev. Lett. 113 (2014) 171601 [arXiv:1307.2199] [INSPIRE].ADSCrossRefGoogle Scholar
  93. [93]
    F. Cachazo, S. He and E.Y. Yuan, Scattering of massless particles: scalars, gluons and gravitons, JHEP 07 (2014) 033 [arXiv:1309.0885] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  94. [94]
    F. Cachazo, S. He and E.Y. Yuan, Einstein-Yang-Mills scattering amplitudes from scattering equations, JHEP 01 (2015) 121 [arXiv:1409.8256] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  95. [95]
    F. Cachazo, S. He and E.Y. Yuan, Scattering equations and matrices: from Einstein to Yang-Mills, DBI and NLSM, JHEP 07 (2015) 149 [arXiv:1412.3479] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  96. [96]
    S.Y. Choi, J.S. Shim and H.S. Song, Factorization and polarization in linearized gravity, Phys. Rev. D 51 (1995) 2751 [hep-th/9411092] [INSPIRE].ADSGoogle Scholar
  97. [97]
    H. Elvang and Y.-t. Huang, Scattering amplitudes, arXiv:1308.1697 [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Indian Institute of Science Education and ResearchPuneIndia
  2. 2.Harish-Chandra Research Institute, HBNIAllahabadIndia

Personalised recommendations