Advertisement

Journal of High Energy Physics

, 2019:148 | Cite as

Searching for a charged Higgs boson with both H±WZ and H±tb couplings at the LHC

  • Jian-Yong Cen
  • Jung-Hsin Chen
  • Xiao-Gang He
  • Gang LiEmail author
  • Jhih-Ying Su
  • Wei Wang
Open Access
Regular Article - Experimental Physics
  • 25 Downloads

Abstract

In certain new physics scenarios, a singly charged Higgs boson can couple to both fermions and W±Z at tree level. We develop new strategies beyond current experimental searches using ppjjH±, H±tb at the Large Hadron Collider (LHC). With the effective H±WZ and H±tb couplings we perform a model-independent analysis at the collision energy \( \sqrt{s}=13 \) TeV with the integrated luminosity of 3 ab−1. We derive the discovery prospects and exclusion limits for the charged Higgs boson in the mass range from 200 GeV to 1 TeV. With |FWZ|, |At| ∼ 0.5–1.0 and 300 GeV ≲ \( {m}_{H^{\pm }} \) ≲ 400 GeV, we point out that a discovery significance of 5σ can be achieved. The constraints and projected sensitivities are also discussed in a realistic model, i.e., the modified Georgi-Machacek model without custodial symmetry. Our proposed search would provide direct evidence for a charged Higgs boson H± that couples to W±Z and tb, and has better sensitivity to the couplings of H±WZ and H±tb than current searches.

Keywords

Hadron-Hadron scattering (experiments) Higgs physics 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
  3. [3]
    ATLAS and CMS collaborations, Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at \( \sqrt{s}=7 \) and 8 TeV, JHEP 08 (2016) 045 [arXiv:1606.02266] [INSPIRE].
  4. [4]
    ATLAS collaboration, Combined measurements of Higgs boson production and decay using up to 80 fb −1 of proton-proton collision data at \( \sqrt{s}=13 \) TeV collected with the ATLAS experiment, ATLAS-CONF-2018-031.
  5. [5]
    CMS collaboration, Combined measurements of the Higgs boson’s couplings at \( \sqrt{s}=13 \) TeV, CMS-PAS-HIG-17-031.
  6. [6]
    Q.-H. Cao, G. Li, K.-P. Xie and J. Zhang, Searching for Weak Singlet Charged Scalar at the Large Hadron Collider, Phys. Rev. D 97 (2018) 115036 [arXiv:1711.02113] [INSPIRE].ADSGoogle Scholar
  7. [7]
    Q.-H. Cao, G. Li, K.-P. Xie and J. Zhang, Searching for weak singlet charged scalar at lepton colliders, arXiv:1810.07659 [INSPIRE].
  8. [8]
    G.C. Branco, P.M. Ferreira, L. Lavoura, M.N. Rebelo, M. Sher and J.P. Silva, Theory and phenomenology of two-Higgs-doublet models, Phys. Rept. 516 (2012) 1 [arXiv:1106.0034] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    J.A. Grifols and A. Mendez, The WZH ± Coupling in SU(2) × U(1) Gauge Models, Phys. Rev. D 22 (1980) 1725 [INSPIRE].ADSGoogle Scholar
  10. [10]
    J.F. Gunion, H.E. Haber, G.L. Kane and S. Dawson, The Higgs Hunter’s Guide, Front. Phys. 80 (2000) 1 [INSPIRE].Google Scholar
  11. [11]
    S. Kanemura, Possible enhancement of the e + e H ± W cross-section in the two Higgs doublet model, Eur. Phys. J. C 17 (2000) 473 [hep-ph/9911541] [INSPIRE].
  12. [12]
    S. Moretti, D. Rojas and K. Yagyu, Enhancement of the H ± W Z vertex in the three scalar doublet model, JHEP 08 (2015) 116 [arXiv:1504.06432] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    G. Abbas, D. Das and M. Patra, Loop induced H ±W ± Z decays in the aligned two-Higgs-doublet model, Phys. Rev. D 98 (2018) 115013 [arXiv:1806.11035] [INSPIRE].ADSGoogle Scholar
  14. [14]
    A.G. Akeroyd et al., Prospects for charged Higgs searches at the LHC, Eur. Phys. J. C 77 (2017) 276 [arXiv:1607.01320] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    G. Lazarides, Q. Shafi and C. Wetterich, Proton Lifetime and Fermion Masses in an SO(10) Model, Nucl. Phys. B 181 (1981) 287 [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    M. Magg and C. Wetterich, Neutrino Mass Problem and Gauge Hierarchy, Phys. Lett. B 94 (1980) 61 [INSPIRE].
  17. [17]
    R.N. Mohapatra and G. Senjanović, Neutrino Masses and Mixings in Gauge Models with Spontaneous Parity Violation, Phys. Rev. D 23 (1981) 165 [INSPIRE].ADSGoogle Scholar
  18. [18]
    T.P. Cheng and L.-F. Li, Neutrino Masses, Mixings and Oscillations in SU(2) × U(1) Models of Electroweak Interactions, Phys. Rev. D 22 (1980) 2860 [INSPIRE].ADSGoogle Scholar
  19. [19]
    M. Cirelli, N. Fornengo and A. Strumia, Minimal dark matter, Nucl. Phys. B 753 (2006) 178 [hep-ph/0512090] [INSPIRE].
  20. [20]
    H. Georgi and M. Machacek, Doubly charged Higgs bosons, Nucl. Phys. B 262 (1985) 463 [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    M.S. Chanowitz and M. Golden, Higgs Boson Triplets With M W = M Z cos θω, Phys. Lett. B 165 (1985) 105 [INSPIRE].
  22. [22]
    P. Sikivie, L. Susskind, M.B. Voloshin and V.I. Zakharov, Isospin Breaking in Technicolor Models, Nucl. Phys. B 173 (1980) 189 [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    C.-W. Chiang and K. Yagyu, Testing the custodial symmetry in the Higgs sector of the Georgi-Machacek model, JHEP 01 (2013) 026 [arXiv:1211.2658] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    K. Hartling, K. Kumar and H.E. Logan, The decoupling limit in the Georgi-Machacek model, Phys. Rev. D 90 (2014) 015007 [arXiv:1404.2640] [INSPIRE].ADSGoogle Scholar
  25. [25]
    ALEPH, DELPHI, L3, OPAL and LEP collaborations, Search for Charged Higgs bosons: Combined Results Using LEP Data, Eur. Phys. J. C 73 (2013) 2463 [arXiv:1301.6065] [INSPIRE].
  26. [26]
    ATLAS collaboration, Search for charged Higgs bosons decaying into top and bottom quarks at \( \sqrt{s}=13 \) TeV with the ATLAS detector, JHEP 11 (2018) 085 [arXiv:1808.03599] [INSPIRE].
  27. [27]
    ATLAS collaboration, Search for charged Higgs bosons in the H ±tb decay channel in pp collisions at \( \sqrt{s}=8 \) TeV using the ATLAS detector, JHEP 03 (2016) 127 [arXiv:1512.03704] [INSPIRE].
  28. [28]
    CMS collaboration, Search for a charged Higgs boson in pp collisions at \( \sqrt{s}=8 \) TeV, JHEP 11 (2015) 018 [arXiv:1508.07774] [INSPIRE].
  29. [29]
    ATLAS collaboration, Search for charged Higgs bosons decaying via H ±τ ± ν τ in the τ +jets and τ +lepton final states with 36 fb −1 of pp collision data recorded at \( \sqrt{s}=13 \) TeV with the ATLAS experiment, JHEP 09 (2018) 139 [arXiv:1807.07915] [INSPIRE].
  30. [30]
    CMS collaboration, Search for charged Higgs bosons with the H±τ ± ν τ decay channel in the fully hadronic final state at \( \sqrt{s}=13 \) TeV, CMS-PAS-HIG-16-031.
  31. [31]
    ATLAS collaboration, Search for charged Higgs bosons decaying via H ±τ ± ν in fully hadronic final states using pp collision data at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 03 (2015) 088 [arXiv:1412.6663] [INSPIRE].
  32. [32]
    CMS collaboration, Search for a light charged Higgs boson decaying to \( \mathrm{c}\overline{\mathrm{s}} \) in pp collisions at \( \sqrt{s}=8 \) TeV, JHEP 12 (2015) 178 [arXiv:1510.04252] [INSPIRE].
  33. [33]
    CMS collaboration, Search for a charged Higgs boson decaying to charm and bottom quarks in proton-proton collisions at \( \sqrt{s}=8 \) TeV, JHEP 11 (2018) 115 [arXiv:1808.06575] [INSPIRE].
  34. [34]
    CMS collaboration, Search for Charged Higgs Bosons Produced via Vector Boson Fusion and Decaying into a Pair of W and Z Bosons Using pp Collisions at \( \sqrt{s}=13 \) TeV, Phys. Rev. Lett. 119 (2017) 141802 [arXiv:1705.02942] [INSPIRE].
  35. [35]
    ATLAS collaboration, Search for a Charged Higgs Boson Produced in the Vector-Boson Fusion Mode with Decay H ±W ± Z using pp Collisions at \( \sqrt{s}=8 \) TeV with the ATLAS Experiment, Phys. Rev. Lett. 114 (2015) 231801 [arXiv:1503.04233] [INSPIRE].
  36. [36]
    J.-Y. Cen, J.-H. Chen, X.-G. He and J.-Y. Su, Impacts of multi-Higgs on the ρ parameter, decays of a neutral Higgs to WW and ZZ and a charged Higgs to WZ, Int. J. Mod. Phys. A 33 (2018) 1850152 [arXiv:1803.05254] [INSPIRE].
  37. [37]
    S. Blasi, S. De Curtis and K. Yagyu, Effects of custodial symmetry breaking in the Georgi-Machacek model at high energies, Phys. Rev. D 96 (2017) 015001 [arXiv:1704.08512] [INSPIRE].ADSGoogle Scholar
  38. [38]
    C.-W. Chiang, X.-G. He and G. Li, Measuring the ratio of HWW and HZZ couplings through W + W H production, JHEP 08 (2018) 126 [arXiv:1805.01689] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    C.-W. Chiang and K. Yagyu, Models with higher weak-isospin Higgs multiplets, Phys. Lett. B 786 (2018) 268 [arXiv:1808.10152] [INSPIRE].
  40. [40]
    J.L. Diaz-Cruz, J. Hernandez-Sanchez and J.J. Toscano, An Effective Lagrangian description of charged Higgs decays H +W + γ, W + Z and W + h 0, Phys. Lett. B 512 (2001) 339 [hep-ph/0106001] [INSPIRE].
  41. [41]
    V.D. Barger, J.L. Hewett and R.J.N. Phillips, New Constraints on the Charged Higgs Sector in Two Higgs Doublet Models, Phys. Rev. D 41 (1990) 3421 [INSPIRE].ADSGoogle Scholar
  42. [42]
    E. Asakawa, S. Kanemura and J. Kanzaki, Potential for measuring the H ± W Z 0 vertex from WZ fusion at the Large Hadron Collider, Phys. Rev. D 75 (2007) 075022 [hep-ph/0612271] [INSPIRE].
  43. [43]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    R.D. Ball et al., Parton distributions with LHC data, Nucl. Phys. B 867 (2013) 244 [arXiv:1207.1303] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].
  46. [46]
    DELPHES 3 collaboration, DELPHES 3, A modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].
  47. [47]
    M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  48. [48]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  49. [49]
    CMS collaboration, Identification of b quark jets at the CMS Experiment in the LHC Run 2, CMS-PAS-BTV-15-001.
  50. [50]
    ATLAS collaboration, Search for vector-boson resonances decaying to a top quark and bottom quark in the lepton plus jets final state in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Lett. B 788 (2019) 347 [arXiv:1807.10473] [INSPIRE].
  51. [51]
    A. Kobakhidze, L. Wu and J. Yue, Anomalous Top-Higgs Couplings and Top Polarisation in Single Top and Higgs Associated Production at the LHC, JHEP 10 (2014) 100 [arXiv:1406.1961] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    Particle Data Group collaboration, Review of Particle Physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].
  53. [53]
    E.L. Berger, Q.-H. Cao, J.-H. Yu and C.P. Yuan, Calculation of Associated Production of a Top Quark and a W’ at the LHC, Phys. Rev. D 84 (2011) 095026 [arXiv:1108.3613] [INSPIRE].ADSGoogle Scholar
  54. [54]
    ATLAS collaboration, Search for \( W^{\prime}\to t\overline{b} \) in the lepton plus jets final state in proton-proton collisions at a centre-of-mass energy of \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Lett. B 743 (2015) 235 [arXiv:1410.4103] [INSPIRE].
  55. [55]
    G. Cowan, K. Cranmer, E. Gross and O. Vitells, Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C 71 (2011) 1554 [Erratum ibid. C 73 (2013) 2501] [arXiv:1007.1727] [INSPIRE].
  56. [56]
    G. Apollinari, O. Brüning, T. Nakamoto and L. Rossi, High Luminosity Large Hadron Collider HL-LHC, CERN Yellow Report (2015) 1 [arXiv:1705.08830] [INSPIRE].
  57. [57]
    C. Degrande, M. Ubiali, M. Wiesemann and M. Zaro, Heavy charged Higgs boson production at the LHC, JHEP 10 (2015) 145 [arXiv:1507.02549] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    N. Kidonakis, Theoretical results for charged-Higgs production, in 13th Conference on the Intersections of Particle and Nuclear Physics (CIPANP 2018), Palm Springs, California, U.S.A., May 29–June 3, 2018 (2018) [arXiv:1808.02935] [INSPIRE].
  59. [59]
    M. Zaro and H. Logan, Recommendations for the interpretation of LHC searches for H 50, H 5± , and H 5± ± in vector boson fusion with decays to vector boson pairs, LHCHXSWG-2015-001 [INSPIRE].
  60. [60]
    ATLAS collaboration, Search for W′ → tbqqbb decays in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Eur. Phys. J. C 75 (2015) 165 [arXiv:1408.0886] [INSPIRE].
  61. [61]
    H.E. Haber and H.E. Logan, Radiative corrections to the \( Zb\overline{b} \) vertex and constraints on extended Higgs sectors, Phys. Rev. D 62 (2000) 015011 [hep-ph/9909335] [INSPIRE].
  62. [62]
    P. Bandyopadhyay, C. Corianò and A. Costantini, General analysis of the charged Higgs sector of the Y = 0 triplet-singlet extension of the MSSM at the LHC, Phys. Rev. D 94 (2016) 055030 [arXiv:1512.08651] [INSPIRE].ADSGoogle Scholar
  63. [63]
    P. Bandyopadhyay and A. Costantini, Distinguishing charged Higgs bosons from different representations at the LHC, JHEP 01 (2018) 067 [arXiv:1710.03110] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    H.E. Logan and V. Rentala, All the generalized Georgi-Machacek models, Phys. Rev. D 92 (2015) 075011 [arXiv:1502.01275] [INSPIRE].
  65. [65]
    M.E. Machacek and M.T. Vaughn, Two Loop Renormalization Group Equations in a General Quantum Field Theory. 2. Yukawa Couplings, Nucl. Phys. B 236 (1984) 221 [INSPIRE].
  66. [66]
    W. Altmannshofer, M. Bauer and M. Carena, Exotic Leptons: Higgs, Flavor and Collider Phenomenology, JHEP 01 (2014) 060 [arXiv:1308.1987] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    M.S. Chanowitz, M.A. Furman and I. Hinchliffe, Weak Interactions of Ultraheavy Fermions, Phys. Lett. B 78 (1978) 285 [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    Z. Murdock, S. Nandi and Z. Tavartkiladze, Perturbativity and a Fourth Generation in the MSSM, Phys. Lett. B 668 (2008) 303 [arXiv:0806.2064] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    H.E. Logan, Radiative corrections to the \( Zb\overline{b} \) vertex and constraints on extended Higgs sectors, Ph.D. Thesis, UC, Santa Cruz (1999) [hep-ph/9906332] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.School of Physics and Information EngineeringShanxi Normal UniversityLinfenChina
  2. 2.Department of PhysicsNational Taiwan UniversityTaipeiTaiwan
  3. 3.Tsung-Dao Lee Institute & SKLPPC, School of Physics and AstronomyShanghai Jiao Tong UniversityShanghaiChina
  4. 4.Physics DivisionNational Center for Theoretical SciencesHsinchuTaiwan
  5. 5.INPAC, SKLPPC, School of Physics and AstronomyShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations