Advertisement

Journal of High Energy Physics

, 2019:139 | Cite as

Shedding light on top partner at the LHC

  • Haider Alhazmi
  • Jeong Han KimEmail author
  • Kyoungchul Kong
  • Ian M. Lewis
Open Access
Regular Article - Theoretical Physics
  • 19 Downloads

Abstract

We investigate the sensitivity of the 14 TeV LHC to pair-produced top partners (T) decaying into the Standard Model top quark (t) plus either a gluon (g) or a photon (γ). The decays Ttg and Ttγ can be dominant when the mixing between the top partner and top quark are negligible. In this case, the conventional decays TbW , TtZ, and Tth are highly suppressed and can be neglected. We take a model-independent approach using effective operators for the T -t-g and T -t-γ interactions, considering both spin- \( \frac{1}{2} \) and spin- \( \frac{3}{2} \) top partners. We perform a semi-realistic simulation with boosted top quark tagging and an appropriate implementation of a jet-faking-photon rate. Despite a simple dimensional analysis indicating that the branching ratios BR(Ttγ) ≪ BR(Ttg) due to the electric-magnetic coupling being much smaller than the strong force coupling, our study shows that the LHC sensitivity to \( T\overline{T}\to t\overline{t}\gamma g \) is more significant than the sensitivity to \( T\overline{T}\to t\overline{t} gg \). This is due to much smaller backgrounds attributed to the isolated high-pT photon. We find that with these decay channels and 3 ab−1 of data, the LHC is sensitive to top partner masses mT ≲ 1.4-1.8 TeV for spin- \( \frac{1}{2} \) and spin- \( \frac{3}{2} \) top partners, respectively.

Keywords

Beyond Standard Model Higgs Physics 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    N. Craig, P. Draper, K. Kong, Y. Ng and D. Whiteson, The unexplored landscape of two-body resonances, arXiv:1610.09392 [INSPIRE].
  2. [2]
    N. Arkani-Hamed, A.G. Cohen, E. Katz and A.E. Nelson, The Littlest Higgs, JHEP 07 (2002) 034 [hep-ph/0206021] [INSPIRE].
  3. [3]
    N. Arkani-Hamed, A.G. Cohen, T. Gregoire and J.G. Wacker, Phenomenology of electroweak symmetry breaking from theory space, JHEP 08 (2002) 020 [hep-ph/0202089] [INSPIRE].
  4. [4]
    I. Low, W. Skiba and D. Tucker-Smith, Little Higgses from an antisymmetric condensate, Phys. Rev. D 66 (2002) 072001 [hep-ph/0207243] [INSPIRE].
  5. [5]
    S. Chang and J.G. Wacker, Little Higgs and custodial SU(2), Phys. Rev. D 69 (2004) 035002 [hep-ph/0303001] [INSPIRE].
  6. [6]
    C. Csáki, J. Hubisz, G.D. Kribs, P. Meade and J. Terning, Variations of little Higgs models and their electroweak constraints, Phys. Rev. D 68 (2003) 035009 [hep-ph/0303236] [INSPIRE].
  7. [7]
    M. Perelstein, M.E. Peskin and A. Pierce, Top quarks and electroweak symmetry breaking in little Higgs models, Phys. Rev. D 69 (2004) 075002 [hep-ph/0310039] [INSPIRE].
  8. [8]
    M.-C. Chen and S. Dawson, One loop radiative corrections to the rho parameter in the littlest Higgs model, Phys. Rev. D 70 (2004) 015003 [hep-ph/0311032] [INSPIRE].
  9. [9]
    J. Berger, J. Hubisz and M. Perelstein, A Fermionic Top Partner: Naturalness and the LHC, JHEP 07 (2012) 016 [arXiv:1205.0013] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    K. Agashe, R. Contino and A. Pomarol, The Minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [INSPIRE].
  11. [11]
    K. Agashe and R. Contino, The Minimal composite Higgs model and electroweak precision tests, Nucl. Phys. B 742 (2006) 59 [hep-ph/0510164] [INSPIRE].
  12. [12]
    K. Agashe, R. Contino, L. Da Rold and A. Pomarol, A Custodial symmetry for \( Zb\overline{b} \), Phys. Lett. B 641 (2006) 62 [hep-ph/0605341] [INSPIRE].
  13. [13]
    R. Contino, L. Da Rold and A. Pomarol, Light custodians in natural composite Higgs models, Phys. Rev. D 75 (2007) 055014 [hep-ph/0612048] [INSPIRE].
  14. [14]
    G.F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The Strongly-Interacting Light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [INSPIRE].
  15. [15]
    A. Azatov and J. Galloway, Light Custodians and Higgs Physics in Composite Models, Phys. Rev. D 85 (2012) 055013 [arXiv:1110.5646] [INSPIRE].
  16. [16]
    J. Serra, Beyond the Minimal Top Partner Decay, JHEP 09 (2015) 176 [arXiv:1506.05110] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    S. Norero, J. Yepes and A. Zerwekh, Scalar resonance in a top partner model, arXiv:1807.02211 [INSPIRE].
  18. [18]
    J. Yepes and A. Zerwekh, Top partner-resonance interplay in a composite Higgs framework, Int. J. Mod. Phys. A 33 (2018) 1841008 [arXiv:1711.10523] [INSPIRE].
  19. [19]
    CMS collaboration, Search for single production of vector-like quarks decaying into a b quark and a W boson in proton-proton collisions at \( \sqrt{s}=13 \) TeV, Phys. Lett. B 772 (2017) 634 [arXiv:1701.08328] [INSPIRE].
  20. [20]
    J. Yepes and A. Zerwekh, Modelling top partner-vector resonance phenomenology, arXiv:1806.06694 [INSPIRE].
  21. [21]
    J.H. Kim and I.M. Lewis, Loop Induced Single Top Partner Production and Decay at the LHC, JHEP 05 (2018) 095 [arXiv:1803.06351] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    CMS collaboration, Search for pair production of excited top quarks in the lepton + jets final state, Phys. Lett. B 778 (2018) 349 [arXiv:1711.10949] [INSPIRE].
  23. [23]
    ATLAS collaboration, Combination of the searches for pair-produced vector-like partners of the third generation quarks at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2018-032 (2018).
  24. [24]
    A. De Simone, O. Matsedonskyi, R. Rattazzi and A. Wulzer, A First Top Partner Hunter’s Guide, JHEP 04 (2013) 004 [arXiv:1211.5663] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    CMS collaboration, Search for pair production of vector-like quarks in the bW bW channel from proton-proton collisions at \( \sqrt{s}=13 \) TeV, Phys. Lett. B 779 (2018) 82 [arXiv:1710.01539] [INSPIRE].
  26. [26]
    CMS collaboration, Search for single production of a vector-like T quark decaying to a Z boson and a top quark in proton-proton collisions at \( \sqrt{s}=13 \) TeV, Phys. Lett. B 781 (2018) 574 [arXiv:1708.01062] [INSPIRE].
  27. [27]
    CMS collaboration, Search for vector-like T and B quark pairs in final states with leptons at \( \sqrt{s}=13 \) TeV, JHEP 08 (2018) 177 [arXiv:1805.04758] [INSPIRE].
  28. [28]
    ATLAS collaboration, Search for pair production of heavy vector-like quarks decaying to high-p T W bosons and b quarks in the lepton-plus-jets final state in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, JHEP 10 (2017) 141 [arXiv:1707.03347] [INSPIRE].
  29. [29]
    ATLAS collaboration, Search for pair production of vector-like top quarks in events with one lepton, jets and missing transverse momentum in \( \sqrt{s}=13 \) TeV pp collisions with the ATLAS detector, JHEP 08 (2017) 052 [arXiv:1705.10751] [INSPIRE].
  30. [30]
    ATLAS collaboration, Search for pair- and single-production of vector-like quarks in final states with at least one Z boson decaying into a pair of electrons or muons in pp collision data collected with the ATLAS detector at \( \sqrt{s}=13 \) TeV, Phys. Rev. D 98 (2018) 112010 [arXiv:1806.10555] [INSPIRE].
  31. [31]
    ATLAS collaboration, Search for pair production of up-type vector-like quarks and for four-top-quark events in final states with multiple b-jets with the ATLAS detector, JHEP 07 (2018) 089 [arXiv:1803.09678] [INSPIRE].
  32. [32]
    H.-J. He, N. Polonsky and S.-f. Su, Extra families, Higgs spectrum and oblique corrections, Phys. Rev. D 64 (2001) 053004 [hep-ph/0102144] [INSPIRE].
  33. [33]
    C.-Y. Chen, S. Dawson and E. Furlan, Vectorlike fermions and Higgs effective field theory revisited, Phys. Rev. D 96 (2017) 015006 [arXiv:1703.06134] [INSPIRE].
  34. [34]
    C.-Y. Chen, S. Dawson and I.M. Lewis, Top Partners and Higgs Boson Production, Phys. Rev. D 90 (2014) 035016 [arXiv:1406.3349] [INSPIRE].
  35. [35]
    S. Dawson and E. Furlan, A Higgs Conundrum with Vector Fermions, Phys. Rev. D 86 (2012) 015021 [arXiv:1205.4733] [INSPIRE].
  36. [36]
    J.A. Aguilar-Saavedra, R. Benbrik, S. Heinemeyer and M. Pérez-Victoria, Handbook of vectorlike quarks: Mixing and single production, Phys. Rev. D 88 (2013) 094010 [arXiv:1306.0572] [INSPIRE].
  37. [37]
    Particle Data Group collaboration, Review of Particle Physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].
  38. [38]
    ATLAS collaboration, Search for single production of vector-like quarks decaying into W b in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2016-072 (2016).
  39. [39]
    A. Freitas, K. Kong and D. Wiegand, Radiative corrections to masses and couplings in Universal Extra Dimensions, JHEP 03 (2018) 093 [arXiv:1711.07526] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    A. De Rujula, L. Maiani and R. Petronzio, Search for Excited Quarks, Phys. Lett. B 140 (1984) 253 [INSPIRE].
  41. [41]
    J.H. Kuhn and P.M. Zerwas, Excited Quarks and Leptons, Phys. Lett. B 147 (1984) 189 [INSPIRE].
  42. [42]
    U. Baur, I. Hinchliffe and D. Zeppenfeld, Excited Quark Production at Hadron Colliders, Int. J. Mod. Phys. A 2 (1987) 1285 [INSPIRE].
  43. [43]
    U. Baur, M. Spira and P.M. Zerwas, Excited Quark and Lepton Production at Hadron Colliders, Phys. Rev. D 42 (1990) 815 [INSPIRE].
  44. [44]
    T. Han, I. Lewis and Z. Liu, Colored Resonant Signals at the LHC: Largest Rate and Simplest Topology, JHEP 12 (2010) 085 [arXiv:1010.4309] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    W. Rarita and J. Schwinger, On a theory of particles with half integral spin, Phys. Rev. 60 (1941) 61 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  46. [46]
    B. Hassanain, J. March-Russell and J.G. Rosa, On the possibility of light string resonances at the LHC and Tevatron from Randall-Sundrum throats, JHEP 07 (2009) 077 [arXiv:0904.4108] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    D.A. Dicus, D. Karabacak, S. Nandi and S.K. Rai, Search for spin-3/2 quarks at the Large Hadron Collider, Phys. Rev. D 87 (2013) 015023 [arXiv:1208.5811] [INSPIRE].
  48. [48]
    B. Moussallam and V. Soni, Production of Heavy Spin 3/2 Fermions in Colliders, Phys. Rev. D 39 (1989) 1883 [INSPIRE].
  49. [49]
    W.J. Stirling and E. Vryonidou, Effect of spin-3/2 top quark excitation on \( t\overline{t} \) production at the LHC, JHEP 01 (2012) 055 [arXiv:1110.1565] [INSPIRE].
  50. [50]
    N.D. Christensen et al., Simulating spin- \( \frac{3}{2} \) particles at colliders, Eur. Phys. J. C 73 (2013) 2580 [arXiv:1308.1668] [INSPIRE].
  51. [51]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].
  52. [52]
    NNPDF collaboration, Parton distributions with QED corrections, Nucl. Phys. B 877 (2013) 290 [arXiv:1308.0598] [INSPIRE].
  53. [53]
    A. Belyaev, N.D. Christensen and A. Pukhov, CalcHEP 3.4 for collider physics within and beyond the Standard Model, Comput. Phys. Commun. 184 (2013) 1729 [arXiv:1207.6082] [INSPIRE].
  54. [54]
    CMS collaboration, Search for pair production of vector-like T and B quarks in single-lepton final states using boosted jet substructure in proton-proton collisions at \( \sqrt{s}=13 \) TeV, JHEP 11 (2017) 085 [arXiv:1706.03408] [INSPIRE].
  55. [55]
    M. Czakon and A. Mitov, Top++: A Program for the Calculation of the Top-Pair Cross-Section at Hadron Colliders, Comput. Phys. Commun. 185 (2014) 2930 [arXiv:1112.5675] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    M. Czakon, P. Fiedler and A. Mitov, Total Top-Quark Pair-Production Cross Section at Hadron Colliders Through O(α S4), Phys. Rev. Lett. 110 (2013) 252004 [arXiv:1303.6254] [INSPIRE].
  57. [57]
    M. Czakon and A. Mitov, NNLO corrections to top pair production at hadron colliders: the quark-gluon reaction, JHEP 01 (2013) 080 [arXiv:1210.6832] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    M. Czakon and A. Mitov, NNLO corrections to top-pair production at hadron colliders: the all-fermionic scattering channels, JHEP 12 (2012) 054 [arXiv:1207.0236] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    M. Cacciari, M. Czakon, M. Mangano, A. Mitov and P. Nason, Top-pair production at hadron colliders with next-to-next-to-leading logarithmic soft-gluon resummation, Phys. Lett. B 710 (2012) 612 [arXiv:1111.5869] [INSPIRE].
  60. [60]
    A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].
  61. [61]
    C. Degrande, C. Duhr, B. Fuks, D. Grellscheid, O. Mattelaer and T. Reiter, UFO — The Universal FeynRules Output, Comput. Phys. Commun. 183 (2012) 1201 [arXiv:1108.2040] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].
  63. [63]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].
  64. [64]
    M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].
  65. [65]
    M. Mangano, Exploring theoretical systematics in the me-to-shower mc merging for multijet process, in FNAL Matrix Element/Monte Carlo Tuning Working Group, (2002) [http://www-cpd.fnal.gov/personal/mrenna/tuning/nov2002/mlm.pdf].
  66. [66]
    ATLAS collaboration, Performance assumptions for an upgraded ATLAS detector at a High-Luminosity LHC, ATL-PHYS-PUB-2013-004 (2013).
  67. [67]
    ATLAS collaboration, Electron and photon energy calibration with the ATLAS detector using LHC Run 1 data, Eur. Phys. J. C 74 (2014) 3071 [arXiv:1407.5063] [INSPIRE].
  68. [68]
    CMS collaboration, Search for pair production of excited top quarks in the lepton + jets final state, JHEP 06 (2014) 125 [arXiv:1311.5357] [INSPIRE].
  69. [69]
    M. Backović and J. Juknevich, TemplateTagger v1.0.0: A Template Matching Tool for Jet Substructure, Comput. Phys. Commun. 185 (2014) 1322 [arXiv:1212.2978] [INSPIRE].
  70. [70]
    L.G. Almeida, S.J. Lee, G. Perez, G. Sterman and I. Sung, Template Overlap Method for Massive Jets, Phys. Rev. D 82 (2010) 054034 [arXiv:1006.2035] [INSPIRE].
  71. [71]
    M. Backovic, O. Gabizon, J. Juknevich, G. Perez and Y. Soreq, Measuring boosted tops in semi-leptonic tt events for the standard model and beyond, JHEP 04 (2014) 176 [arXiv:1311.2962] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    L.G. Almeida, M. Backović, M. Cliche, S.J. Lee and M. Perelstein, Playing Tag with ANN: Boosted Top Identification with Pattern Recognition, JHEP 07 (2015) 086 [arXiv:1501.05968] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    ATLAS collaboration, Expected performance for an upgraded ATLAS detector at High-Luminosity LHC, ATL-PHYS-PUB-2016-026 (2016).
  74. [74]
    M. Backovic, T. Flacke, J.H. Kim and S.J. Lee, Search Strategies for TeV Scale Fermionic Top Partners with Charge 2/3, JHEP 04 (2016) 014 [arXiv:1507.06568] [INSPIRE].ADSGoogle Scholar
  75. [75]
    G. Cowan, K. Cranmer, E. Gross and O. Vitells, Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C 71 (2011) 1554 [Erratum ibid. C 73 (2013) 2501] [arXiv:1007.1727] [INSPIRE].
  76. [76]
    D. Gonçalves, T. Han, F. Kling, T. Plehn and M. Takeuchi, Higgs boson pair production at future hadron colliders: From kinematics to dynamics, Phys. Rev. D 97 (2018) 113004 [arXiv:1802.04319] [INSPIRE].
  77. [77]
    M.J. Dolan, J.L. Hewett, M. Krämer and T.G. Rizzo, Simplified Models for Higgs Physics: Singlet Scalar and Vector-like Quark Phenomenology, JHEP 07 (2016) 039 [arXiv:1601.07208] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    N. Bizot, G. Cacciapaglia and T. Flacke, Common exotic decays of top partners, JHEP 06 (2018) 065 [arXiv:1803.00021] [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    B.A. Dobrescu, Minimal composite Higgs model with light bosons, Phys. Rev. D 63 (2001) 015004 [hep-ph/9908391] [INSPIRE].
  80. [80]
    S. Banerjee, D. Barducci, G. Bélanger and C. Delaunay, Implications of a High-Mass Diphoton Resonance for Heavy Quark Searches, JHEP 11 (2016) 154 [arXiv:1606.09013] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    M. Chala, Direct bounds on heavy toplike quarks with standard and exotic decays, Phys. Rev. D 96 (2017) 015028 [arXiv:1705.03013] [INSPIRE].
  82. [82]
    K. Das, T. Mondal and S.K. Rai, Non-standard signatures of vector-like quarks in a leptophobic 221 model, arXiv:1807.08160 [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Haider Alhazmi
    • 1
    • 2
  • Jeong Han Kim
    • 1
    Email author
  • Kyoungchul Kong
    • 1
  • Ian M. Lewis
    • 1
  1. 1.Department of Physics and AstronomyUniversity of KansasLawrenceU.S.A.
  2. 2.Department of PhysicsJazan UniversityJazanSaudi Arabia

Personalised recommendations