Advertisement

Journal of High Energy Physics

, 2019:131 | Cite as

Holomorphic subgraph reduction of higher-point modular graph forms

  • Jan E. Gerken
  • Justin KaidiEmail author
Open Access
Regular Article - Theoretical Physics
  • 4 Downloads

Abstract

Modular graph forms are a class of modular covariant functions which appear in the genus-one contribution to the low-energy expansion of closed string scattering amplitudes. Modular graph forms with holomorphic subgraphs enjoy the simplifying property that they may be reduced to sums of products of modular graph forms of strictly lower loop order. In the particular case of dihedral modular graph forms, a closed form expression for this holomorphic subgraph reduction was obtained previously by D’Hoker and Green. In the current work, we extend these results to trihedral modular graph forms. Doing so involves the identification of a modular covariant regularization scheme for certain conditionally convergent sums over discrete momenta, with some elements of the sum being excluded. The appropriate regularization scheme is identified for any number of exclusions, which in principle allows one to perform holomorphic subgraph reduction of higher-point modular graph forms with arbitrary holomorphic subgraphs.

Keywords

Scattering Amplitudes Superstrings and Heterotic Strings 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    E. D’Hoker and M.B. Green, Identities between modular graph forms, J. Number Theor. 189 (2018) 25 [arXiv:1603.00839] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    J.E. Gerken, A. Kleinschmidt and O. Schlotterer, Heterotic-string amplitudes at one loop: modular graph forms and relations to open strings, arXiv:1811.02548 [INSPIRE].
  3. [3]
    J. Broedel, C.R. Mafra, N. Matthes and O. Schlotterer, Elliptic multiple zeta values and one-loop superstring amplitudes, JHEP 07 (2015) 112 [arXiv:1412.5535] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    M.B. Green, C.R. Mafra and O. Schlotterer, Multiparticle one-loop amplitudes and S-duality in closed superstring theory, JHEP 10 (2013) 188 [arXiv:1307.3534] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    S. Lee and O. Schlotterer, Fermionic one-loop amplitudes of the RNS superstring, JHEP 03 (2018) 190 [arXiv:1710.07353] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    E. D’Hoker, Modular forms in physics, lecture notes, unpublished.Google Scholar
  7. [7]
    M.B. Green and P. Vanhove, D instantons, strings and M-theory, Phys. Lett. B 408 (1997) 122 [hep-th/9704145] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    M.B. Green, M. Gutperle and P. Vanhove, One loop in eleven-dimensions, Phys. Lett. B 409 (1997) 177 [hep-th/9706175] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    M.B. Green, H.-h. Kwon and P. Vanhove, Two loops in eleven-dimensions, Phys. Rev. D 61 (2000) 104010 [hep-th/9910055] [INSPIRE].ADSMathSciNetGoogle Scholar
  10. [10]
    M.B. Green and P. Vanhove, The low-energy expansion of the one loop type-II superstring amplitude, Phys. Rev. D 61 (2000) 104011 [hep-th/9910056] [INSPIRE].ADSMathSciNetGoogle Scholar
  11. [11]
    E. D’Hoker and D.H. Phong, Two-loop superstrings VI: non-renormalization theorems and the 4-point function, Nucl. Phys. B 715 (2005) 3 [hep-th/0501197] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  12. [12]
    E. D’Hoker, M. Gutperle and D.H. Phong, Two-loop superstrings and S-duality, Nucl. Phys. B 722 (2005) 81 [hep-th/0503180] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    M.B. Green and M. Gutperle, Effects of D instantons, Nucl. Phys. B 498 (1997) 195 [hep-th/9701093] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    E. D’Hoker, M.B. Green, B. Pioline and R. Russo, Matching the D 6 R 4 interaction at two-loops, JHEP 01 (2015) 031 [arXiv:1405.6226] [INSPIRE].CrossRefGoogle Scholar
  15. [15]
    E. D’Hoker, M.B. Green and P. Vanhove, On the modular structure of the genus-one Type II superstring low energy expansion, JHEP 08 (2015) 041 [arXiv:1502.06698] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    M.B. Green, J.G. Russo and P. Vanhove, Low energy expansion of the four-particle genus-one amplitude in type-II superstring theory, JHEP 02 (2008) 020 [arXiv:0801.0322] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    E. D’Hoker, M.B. Green, Ö. Gürdogan and P. Vanhove, Modular graph functions, Commun. Num. Theor. Phys. 11 (2017) 165 [arXiv:1512.06779] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    E. D’Hoker and J. Kaidi, Hierarchy of modular graph identities, JHEP 11 (2016) 051 [arXiv:1608.04393] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    A. Basu, Poisson equation for the three loop ladder diagram in string theory at genus one, Int. J. Mod. Phys. A 31 (2016) 1650169 [arXiv:1606.02203] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  20. [20]
    A. Basu, Proving relations between modular graph functions, Class. Quant. Grav. 33 (2016) 235011 [arXiv:1606.07084] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    A. Basu, Simplifying the one loop five graviton amplitude in Type IIB string theory, Int. J. Mod. Phys. A 32 (2017) 1750074 [arXiv:1608.02056] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    A. Basu, Low momentum expansion of one loop amplitudes in heterotic string theory, JHEP 11 (2017) 139 [arXiv:1708.08409] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    A. Kleinschmidt and V. Verschinin, Tetrahedral modular graph functions, JHEP 09 (2017) 155 [arXiv:1706.01889] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    A. Basu, A simplifying feature of the heterotic one loop four graviton amplitude, Phys. Lett. B 776 (2018) 182 [arXiv:1710.01993] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    J. Broedel, O. Schlotterer and F. Zerbini, From elliptic multiple zeta values to modular graph functions: open and closed strings at one loop, arXiv:1803.00527 [INSPIRE].
  26. [26]
    F. Brown, A class of non-holomorphic modular forms I, 2017, arXiv:1707.01230 [INSPIRE].
  27. [27]
    F. Brown, A class of non-holomorphic modular forms II: Equivariant iterated Eisenstein integrals, arXiv:1708.03354.
  28. [28]
    E. D’Hoker and W. Duke, Fourier series of modular graph functions, arXiv:1708.07998 [INSPIRE].
  29. [29]
    F. Zerbini, Modular and holomorphic graph function from superstring amplitudes, arXiv:1807.04506 [INSPIRE].
  30. [30]
    E. D’Hoker and J. Kaidi, Odd modular graph and cuspidal functions, to appear.Google Scholar
  31. [31]
    E. D’Hoker, M.B. Green and B. Pioline, Asymptotics of the D 84 genus-two string invariant, arXiv:1806.02691 [INSPIRE].
  32. [32]
    E. D’Hoker, M.B. Green and B. Pioline, Higher genus modular graph functions, string invariants and their exact asymptotics, arXiv:1712.06135 [INSPIRE].
  33. [33]
    A. Basu, Supergravity limit of genus two modular graph functions in the worldline formalism, Phys. Lett. B 782 (2018) 570 [arXiv:1803.08329] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut)PotsdamGermany
  2. 2.Mani L. Bhaumik Institute for Theoretical Physics, Department of Physics and AstronomyUniversity of CaliforniaLos AngelesU.S.A.

Personalised recommendations