Advertisement

Journal of High Energy Physics

, 2019:117 | Cite as

L algebras and tensor hierarchies in Exceptional Field Theory and Gauged Supergravity

  • Yago Cagnacci
  • Tomas Codina
  • Diego MarquesEmail author
Open Access
Regular Article - Theoretical Physics
  • 5 Downloads

Abstract

We show how the gauge and field structure of the tensor hierarchies in Double and E7(7) Exceptional Field Theory fits into L algebras. Special attention is paid to redefinitions, the role of covariantly constrained fields and intertwiners. The results are connected to Gauged Supergravities through generalized Scherk-Schwarz reductions. We find that certain gauging-dependent parameters generate trivial gauge transformations, giving rise to novel symmetries for symmetries that are absent in their ungauged counterparts.

Keywords

Extended Supersymmetry String Duality 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J. Stasheff, Homotopy associativity of H-spaces. II Trans. Am. Math. Soc. 108 (1963) 293.Google Scholar
  2. [2]
    J. Stasheff, H-spaces from a hotompy point of view, Lecture Notes in Mathematics, vol. 161, Springer Verlag (1970).Google Scholar
  3. [3]
    B. Zwiebach, Closed string field theory: Quantum action and the B-V master equation, Nucl. Phys. B 390 (1993) 33 [hep-th/9206084] [INSPIRE].
  4. [4]
    T. Lada and J. Stasheff, Introduction to SH Lie algebras for physicists, Int. J. Theor. Phys. 32 (1993) 1087 [hep-th/9209099] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    G. Barnich, R. Fulp, T. Lada and J. Stasheff, The sh Lie structure of Poisson brackets in field theory, Commun. Math. Phys. 191 (1998) 585 [hep-th/9702176] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    A. Sen, Wilsonian Effective Action of Superstring Theory, JHEP 01 (2017) 108 [arXiv:1609.00459] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    F.A. Berends, G.J.H. Burgers and H. van Dam, On the Theoretical Problems in Constructing Interactions Involving Higher Spin Massless Particles, Nucl. Phys. B 260 (1985) 295 [INSPIRE].
  8. [8]
    R. Fulp, T. Lada and J. Stasheff, sh-Lie algebras induced by gauge transformations, Commun. Math. Phys. 231 (2002) 25 [INSPIRE].
  9. [9]
    A.M. Zeitlin, Homotopy Lie Superalgebra in Yang-Mills Theory, JHEP 09 (2007) 068 [arXiv:0708.1773] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    A.M. Zeitlin, String field theory-inspired algebraic structures in gauge theories, J. Math. Phys. 50 (2009) 063501 [arXiv:0711.3843] [INSPIRE].
  11. [11]
    A.M. Zeitlin, Conformal Field Theory and Algebraic Structure of Gauge Theory, JHEP 03 (2010) 056 [arXiv:0812.1840] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    O. Hohm and B. Zwiebach, L Algebras and Field Theory, Fortsch. Phys. 65 (2017) 1700014 [arXiv:1701.08824] [INSPIRE].
  13. [13]
    R. Blumenhagen, M. Fuchs and M. Traube, \( \mathcal{W} \) algebras are L algebras, JHEP 07 (2017) 060 [arXiv:1705.00736] [INSPIRE].
  14. [14]
    R. Blumenhagen, M. Fuchs and M. Traube, On the Structure of Quantum L algebras, JHEP 10 (2017) 163 [arXiv:1706.09034] [INSPIRE].
  15. [15]
    R. Blumenhagen, I. Brunner, V. Kupriyanov and D. Lüst, Bootstrapping non-commutative gauge theories from L algebras, JHEP 05 (2018) 097 [arXiv:1803.00732] [INSPIRE].
  16. [16]
    R. Blumenhagen, M. Brinkmann, V. Kupriyanov and M. Traube, On the Uniqueness of L bootstrap: Quasi-isomorphisms are Seiberg-Witten Maps, J. Math. Phys. 59 (2018) 123505 [arXiv:1806.10314] [INSPIRE].
  17. [17]
    W. Siegel, Superspace duality in low-energy superstrings, Phys. Rev. D 48 (1993) 2826 [hep-th/9305073] [INSPIRE].
  18. [18]
    W. Siegel, Two vierbein formalism for string inspired axionic gravity, Phys. Rev. D 47 (1993) 5453 [hep-th/9302036] [INSPIRE].
  19. [19]
    C. Hull and B. Zwiebach, Double Field Theory, JHEP 09 (2009) 099 [arXiv:0904.4664] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    D. Roytenberg and A. Weinstein, Courant Algebroids and Strongly Homotopy Lie Algebras, math/9802118.
  21. [21]
    C. Hull and B. Zwiebach, The Gauge algebra of double field theory and Courant brackets, JHEP 09 (2009) 090 [arXiv:0908.1792] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    A. Deser and C. Sämann, Extended Riemannian Geometry I: Local Double Field Theory, arXiv:1611.02772 [INSPIRE].
  23. [23]
    A. Deser, M.A. Heller and C. Sämann, Extended Riemannian Geometry II: Local Heterotic Double Field Theory, JHEP 04 (2018) 106 [arXiv:1711.03308] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    B. de Wit, H. Nicolai and H. Samtleben, Gauged Supergravities, Tensor Hierarchies and M-theory, JHEP 02 (2008) 044 [arXiv:0801.1294] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  25. [25]
    D. Baraglia, Leibniz algebroids, twistings and exceptional generalized geometry, J. Geom. Phys. 62 (2012) 903 [arXiv:1101.0856] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    M. Cederwall and J. Palmkvist, L algebras for extended geometry from Borcherds superalgebras, arXiv:1804.04377 [INSPIRE].
  27. [27]
    M. Cederwall, Algebraic structures in exceptional geometry, 2017, arXiv:1712.06995, DOI [INSPIRE].
  28. [28]
    A.S. Arvanitakis, Brane Wess-Zumino terms from AKSZ and exceptional generalised geometry as an L -algebroid, arXiv:1804.07303 [INSPIRE].
  29. [29]
    O. Hohm and H. Samtleben, Leibniz-Chern-Simons Theory and Phases of Exceptional Field Theory, arXiv:1805.03220 [INSPIRE].
  30. [30]
    F. Riccioni and P.C. West, The E 11 origin of all maximal supergravities, JHEP 07 (2007) 063 [arXiv:0705.0752] [INSPIRE].
  31. [31]
    F. Riccioni, D. Steele and P. West, The E 11 origin of all maximal supergravities: The Hierarchy of field-strengths, JHEP 09 (2009) 095 [arXiv:0906.1177] [INSPIRE].
  32. [32]
    J. Greitz, P. Howe and J. Palmkvist, The tensor hierarchy simplified, Class. Quant. Grav. 31 (2014) 087001 [arXiv:1308.4972] [INSPIRE].
  33. [33]
    J. Palmkvist, The tensor hierarchy algebra, J. Math. Phys. 55 (2014) 011701 [arXiv:1305.0018] [INSPIRE].
  34. [34]
    J. Palmkvist, Tensor hierarchies, Borcherds algebras and E11, JHEP 02 (2012) 066 [arXiv:1110.4892] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    S. Lavau, Tensor hierarchies and Lie n-extensions of Leibniz algebras, arXiv:1708.07068 [INSPIRE].
  36. [36]
    G. Aldazabal, M. Graña, D. Marqués and J.A. Rosabal, The gauge structure of Exceptional Field Theories and the tensor hierarchy, JHEP 04 (2014) 049 [arXiv:1312.4549] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    O. Hohm and Y.-N. Wang, Tensor hierarchy and generalized Cartan calculus in SL(3) × SL(2) exceptional field theory, JHEP 04 (2015) 050 [arXiv:1501.01600] [INSPIRE].
  38. [38]
    Y.-N. Wang, Generalized Cartan Calculus in general dimension, JHEP 07 (2015) 114 [arXiv:1504.04780] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    O. Hohm and H. Samtleben, Gauge theory of Kaluza-Klein and winding modes, Phys. Rev. D 88 (2013) 085005 [arXiv:1307.0039] [INSPIRE].
  40. [40]
    O. Hohm and H. Samtleben, Exceptional field theory. II. E 7(7), Phys. Rev. D 89 (2014) 066017 [arXiv:1312.4542] [INSPIRE].
  41. [41]
    H. Godazgar, M. Godazgar, O. Hohm, H. Nicolai and H. Samtleben, Supersymmetric E 7(7) Exceptional Field Theory, JHEP 09 (2014) 044 [arXiv:1406.3235] [INSPIRE].
  42. [42]
    J. Schon and M. Weidner, Gauged N = 4 supergravities, JHEP 05 (2006) 034 [hep-th/0602024] [INSPIRE].
  43. [43]
    B. de Wit, H. Samtleben and M. Trigiante, On Lagrangians and gaugings of maximal supergravities, Nucl. Phys. B 655 (2003) 93 [hep-th/0212239] [INSPIRE].
  44. [44]
    B. de Wit, H. Samtleben and M. Trigiante, The Maximal D = 4 supergravities, JHEP 06 (2007) 049 [arXiv:0705.2101] [INSPIRE].
  45. [45]
    M. Weidner, Gauged supergravities in various spacetime dimensions, Fortsch. Phys. 55 (2007) 843 [hep-th/0702084] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    G. Aldazabal, D. Marques and C. Núñez, Double Field Theory: A Pedagogical Review, Class. Quant. Grav. 30 (2013) 163001 [arXiv:1305.1907] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  47. [47]
    D.S. Berman and D.C. Thompson, Duality Symmetric String and M-theory, Phys. Rept. 566 (2014) 1 [arXiv:1306.2643] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  48. [48]
    O. Hohm, D. Lüst and B. Zwiebach, The Spacetime of Double Field Theory: Review, Remarks and Outlook, Fortsch. Phys. 61 (2013) 926 [arXiv:1309.2977] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  49. [49]
    H. Samtleben, Lectures on Gauged Supergravity and Flux Compactifications, Class. Quant. Grav. 25 (2008) 214002 [arXiv:0808.4076] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  50. [50]
    M. Trigiante, Gauged Supergravities, Phys. Rept. 680 (2017) 1 [arXiv:1609.09745] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  51. [51]
    E.A. Bergshoeff, J. Hartong, O. Hohm, M. Huebscher and T. Ortín, Gauge Theories, Duality Relations and the Tensor Hierarchy, JHEP 04 (2009) 123 [arXiv:0901.2054] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  52. [52]
    O. Hohm, V. Kupriyanov, D. Lüst and M. Traube, Constructions of L Algebras and Their Field Theory Realizations, Adv. Math. Phys. 2018 (2018) 9282905 [arXiv:1709.10004] [INSPIRE].
  53. [53]
    O. Hohm, C. Hull and B. Zwiebach, Generalized metric formulation of double field theory, JHEP 08 (2010) 008 [arXiv:1006.4823] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  54. [54]
    C.M. Hull, Generalised Geometry for M-theory, JHEP 07 (2007) 079 [hep-th/0701203] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  55. [55]
    P. Pires Pacheco and D. Waldram, M-theory, exceptional generalised geometry and superpotentials, JHEP 09 (2008) 123 [arXiv:0804.1362] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  56. [56]
    C. Hillmann, Generalized E 7(7) coset dynamics and D = 11 supergravity, JHEP 03 (2009) 135 [arXiv:0901.1581] [INSPIRE].
  57. [57]
    D.S. Berman and M.J. Perry, Generalized Geometry and M-theory, JHEP 06 (2011) 074 [arXiv:1008.1763] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  58. [58]
    A. Coimbra, C. Strickland-Constable and D. Waldram, Supergravity as Generalised Geometry II: E d(d) × ℝ+ and M-theory, JHEP 03 (2014) 019 [arXiv:1212.1586] [INSPIRE].
  59. [59]
    D.S. Berman, H. Godazgar, M.J. Perry and P. West, Duality Invariant Actions and Generalised Geometry, JHEP 02 (2012) 108 [arXiv:1111.0459] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  60. [60]
    M. Cederwall, J. Edlund and A. Karlsson, Exceptional geometry and tensor fields, JHEP 07 (2013) 028 [arXiv:1302.6736] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  61. [61]
    J.A. Rosabal, On the exceptional generalised Lie derivative for d ≥ 7, JHEP 09 (2015) 153 [arXiv:1410.8148] [INSPIRE].
  62. [62]
    M. Cederwall and J.A. Rosabal, E 8 geometry, JHEP 07 (2015) 007 [arXiv:1504.04843] [INSPIRE].
  63. [63]
    M. Cederwall and J. Palmkvist, Extended geometries, JHEP 02 (2018) 071 [arXiv:1711.07694] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  64. [64]
    A. Coimbra, C. Strickland-Constable and D. Waldram, E d(d) × ℝ+ generalised geometry, connections and M-theory, JHEP 02 (2014) 054 [arXiv:1112.3989] [INSPIRE].
  65. [65]
    D.S. Berman, M. Cederwall, A. Kleinschmidt and D.C. Thompson, The gauge structure of generalised diffeomorphisms, JHEP 01 (2013) 064 [arXiv:1208.5884] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    A.G. Tumanov and P. West, E11 and exceptional field theory, Int. J. Mod. Phys. A 31 (2016) 1650066 [arXiv:1507.08912] [INSPIRE].
  67. [67]
    O. Hohm and H. Samtleben, Exceptional Field Theory I: E 6(6) covariant Form of M-theory and Type IIB, Phys. Rev. D 89 (2014) 066016 [arXiv:1312.0614] [INSPIRE].
  68. [68]
    E. Musaev and H. Samtleben, Fermions and supersymmetry in E 6(6) exceptional field theory, JHEP 03 (2015) 027 [arXiv:1412.7286] [INSPIRE].
  69. [69]
    O. Hohm and H. Samtleben, Exceptional field theory. III. E 8(8), Phys. Rev. D 90 (2014) 066002 [arXiv:1406.3348] [INSPIRE].
  70. [70]
    A. Baguet and H. Samtleben, E 8(8) Exceptional Field Theory: Geometry, Fermions and Supersymmetry, JHEP 09 (2016) 168 [arXiv:1607.03119] [INSPIRE].
  71. [71]
    C.D.A. Blair and E. Malek, Geometry and fluxes of SL(5) exceptional field theory, JHEP 03 (2015) 144 [arXiv:1412.0635] [INSPIRE].
  72. [72]
    A. Abzalov, I. Bakhmatov and E.T. Musaev, Exceptional field theory: SO(5, 5), JHEP 06 (2015) 088 [arXiv:1504.01523] [INSPIRE].
  73. [73]
    E.T. Musaev, Exceptional field theory: SL(5), JHEP 02 (2016) 012 [arXiv:1512.02163] [INSPIRE].
  74. [74]
    D.S. Berman, C.D.A. Blair, E. Malek and F.J. Rudolph, An action for F-theory: SL(2)ℝ+ exceptional field theory, Class. Quant. Grav. 33 (2016) 195009 [arXiv:1512.06115] [INSPIRE].
  75. [75]
    F. Ciceri, A. Guarino and G. Inverso, The exceptional story of massive IIA supergravity, JHEP 08 (2016) 154 [arXiv:1604.08602] [INSPIRE].
  76. [76]
    D. Cassani, O. de Felice, M. Petrini, C. Strickland-Constable and D. Waldram, Exceptional generalised geometry for massive IIA and consistent reductions, JHEP 08 (2016) 074 [arXiv:1605.00563] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  77. [77]
    A. Baguet, M. Magro and H. Samtleben, Generalized IIB supergravity from exceptional field theory, JHEP 03 (2017) 100 [arXiv:1612.07210] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  78. [78]
    G. Aldazabal, W. Baron, D. Marques and C. Núñez, The effective action of Double Field Theory, JHEP 11 (2011) 052 [Erratum ibid. 11 (2011) 109] [arXiv:1109.0290] [INSPIRE].
  79. [79]
    D. Geissbuhler, Double Field Theory and N = 4 Gauged Supergravity, JHEP 11 (2011) 116 [arXiv:1109.4280] [INSPIRE].
  80. [80]
    M. Graña and D. Marques, Gauged Double Field Theory, JHEP 04 (2012) 020 [arXiv:1201.2924] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  81. [81]
    G. Dibitetto, J.J. Fernandez-Melgarejo, D. Marques and D. Roest, Duality orbits of non-geometric fluxes, Fortsch. Phys. 60 (2012) 1123 [arXiv:1203.6562] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  82. [82]
    D. Geissbuhler, D. Marques, C. Núñez and V. Penas, Exploring Double Field Theory, JHEP 06 (2013) 101 [arXiv:1304.1472] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  83. [83]
    D.S. Berman and K. Lee, Supersymmetry for Gauged Double Field Theory and Generalised Scherk-Schwarz Reductions, Nucl. Phys. B 881 (2014) 369 [arXiv:1305.2747] [INSPIRE].
  84. [84]
    W. Cho, J.J. Fernández-Melgarejo, I. Jeon and J.-H. Park, Supersymmetric gauged double field theory: systematic derivation by virtue of twist, JHEP 08 (2015) 084 [arXiv:1505.01301] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  85. [85]
    F. Hassler and D. Lüst, Consistent Compactification of Double Field Theory on Non-geometric Flux Backgrounds, JHEP 05 (2014) 085 [arXiv:1401.5068] [INSPIRE].ADSCrossRefGoogle Scholar
  86. [86]
    R. Blumenhagen, F. Hassler and D. Lüst, Double Field Theory on Group Manifolds, JHEP 02 (2015) 001 [arXiv:1410.6374] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  87. [87]
    F. Ciceri, G. Dibitetto, J.J. Fernandez-Melgarejo, A. Guarino and G. Inverso, Double Field Theory at SL(2) angles, JHEP 05 (2017) 028 [arXiv:1612.05230] [INSPIRE].
  88. [88]
    A. Catal-Ozer, Duality Twisted Reductions of Double Field Theory of Type II Strings, JHEP 09 (2017) 044 [arXiv:1705.08181] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  89. [89]
    D.S. Berman, E.T. Musaev, D.C. Thompson and D.C. Thompson, Duality Invariant M-theory: Gauged supergravities and Scherk-Schwarz reductions, JHEP 10 (2012) 174 [arXiv:1208.0020] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  90. [90]
    G. Aldazabal, M. Graña, D. Marqués and J.A. Rosabal, Extended geometry and gauged maximal supergravity, JHEP 06 (2013) 046 [arXiv:1302.5419] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  91. [91]
    E.T. Musaev, Gauged supergravities in 5 and 6 dimensions from generalised Scherk-Schwarz reductions, JHEP 05 (2013) 161 [arXiv:1301.0467] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  92. [92]
    K. Lee, C. Strickland-Constable and D. Waldram, Spheres, generalised parallelisability and consistent truncations, Fortsch. Phys. 65 (2017) 1700048 [arXiv:1401.3360] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  93. [93]
    W.H. Baron and G. Dall’Agata, Uplifting non-compact gauged supergravities, JHEP 02 (2015) 003 [arXiv:1410.8823] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  94. [94]
    O. Hohm and H. Samtleben, Consistent Kaluza-Klein Truncations via Exceptional Field Theory, JHEP 01 (2015) 131 [arXiv:1410.8145] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  95. [95]
    K. Lee, C. Strickland-Constable and D. Waldram, New Gaugings and Non-Geometry, Fortsch. Phys. 65 (2017) 1700049 [arXiv:1506.03457] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  96. [96]
    E. Malek and H. Samtleben, Dualising consistent IIA/ IIB truncations, JHEP 12 (2015) 029 [arXiv:1510.03433] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  97. [97]
    E. Malek, Half-Maximal Supersymmetry from Exceptional Field Theory, Fortsch. Phys. 65 (2017) 1700061 [arXiv:1707.00714] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  98. [98]
    G. Inverso, Generalised Scherk-Schwarz reductions from gauged supergravity, JHEP 12 (2017) 124 [arXiv:1708.02589] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  99. [99]
    G. Aldazabal, M. Mayo and C. Nuñez, Probing the String Winding Sector, JHEP 03 (2017) 096 [arXiv:1611.04927] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  100. [100]
    G. Aldazabal, D. Marques, C. Núñez and J.A. Rosabal, On Type IIB moduli stabilization and N = 4, 8 supergravities, Nucl. Phys. B 849 (2011) 80 [arXiv:1101.5954] [INSPIRE].
  101. [101]
    G. Dibitetto, A. Guarino and D. Roest, How to halve maximal supergravity, JHEP 06 (2011) 030 [arXiv:1104.3587] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Instituto de Astronomía y Física del Espacio (CONICET-UBA)Buenos AiresArgentina

Personalised recommendations