Advertisement

Journal of High Energy Physics

, 2019:115 | Cite as

Maximally \( \mathcal{N} \) -extended super-BMS3 algebras and generalized 3D gravity solutions

  • Nabamita BanerjeeEmail author
  • Arindam Bhattacharjee
  • Ivano Lodato
  • Turmoli Neogi
Open Access
Regular Article - Theoretical Physics
  • 18 Downloads

Abstract

We consider the maximal \( \mathcal{N} \) -extended supergravity theory in 3 dimensions with fermionic generators transforming under real but non necessarily irreducible representations of the internal algebra. We obtain the symmetry algebra at null infinity preserving boundary conditions of asymptotically flat solutions, i.e. the maximal \( \mathcal{N} \) -extended super-BMS3 algebra, which possesses non-linear correction in the anti-commutators of supercharges. We present the supersymmetric energy bound and derive the explicit form of the asymptotic Killing spinors. We also find the most generic circular symmetric ground state of the theory, which corresponds to a non-supersymmetric cosmological solutions and derive their entropy.

Keywords

Chern-Simons Theories Extended Supersymmetry Classical Theories of Gravity Topological Field Theories 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    S. Carlip, Lectures on (2 + 1) dimensional gravity, J. Korean Phys. Soc. 28 (1995) S447 [gr-qc/9503024] [INSPIRE].
  2. [2]
    M. Henneaux, Energy-momentum, angular momentum, and supercharge in 2 + 1 supergravity, Phys. Rev. D 29 (1984) 2766.Google Scholar
  3. [3]
    S. Deser, Absence of Static Einstein Yang-Mills Excitations in Three-dimensions, Class. Quant. Grav. 1 (1984) L1 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    H. Bondi, M.G.J. van der Burg and A.W.K. Metzner, Gravitational waves in general relativity. 7. Waves from axisymmetric isolated systems, Proc. Roy. Soc. Lond. A 269 (1962) 21.Google Scholar
  5. [5]
    R. Sachs, Asymptotic symmetries in gravitational theory, Phys. Rev. 128 (1962) 2851 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    A. Ashtekar, J. Bicak and B.G. Schmidt, Asymptotic structure of symmetry reduced general relativity, Phys. Rev. D 55 (1997) 669 [gr-qc/9608042] [INSPIRE].
  7. [7]
    G. Barnich and G. Compere, Classical central extension for asymptotic symmetries at null infinity in three spacetime dimensions, Class. Quant. Grav. 24 (2007) F15 [gr-qc/0610130] [INSPIRE].
  8. [8]
    G. Barnich and C. Troessaert, Aspects of the BMS/CFT correspondence, JHEP 05 (2010) 062 [arXiv:1001.1541] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    G. Barnich, A. Gomberoff and H.A. Gonzalez, The flat limit of three dimensional asymptotically Anti-de Sitter spacetimes, Phys. Rev. D 86 (2012) 024020 [arXiv:1204.3288] [INSPIRE].
  10. [10]
    A. Bagchi and R. Fareghbal, BMS/GCA redux: towards flatspace holography from non-relativistic symmetries, JHEP 10 (2012) 092 [arXiv:1203.5795] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    N. Banerjee, D.P. Jatkar, S. Mukhi and T. Neogi, Free-field realisations of the BMS 3 algebra and its extensions, JHEP 06 (2016) 024 [arXiv:1512.06240] [INSPIRE].
  12. [12]
    N. Banerjee, D.P. Jatkar, I. Lodato, S. Mukhi and T. Neogi, Extended supersymmetric BMS 3 algebras and their free field realisations, JHEP 11 (2016) 059 [arXiv:1609.09210] [INSPIRE].
  13. [13]
    H.A. Gonzalez, J. Matulich, M. Pino and R. Troncoso, Asymptotically flat spacetimes in three-dimensional higher spin gravity, JHEP 09 (2013) 016 [arXiv:1307.5651] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    H. Afshar et al., Spin-3 gravity in three-dimensional flat space, Phys. Rev. Lett. 111 (2013) 121603 [arXiv:1307.4768] [INSPIRE].
  15. [15]
    I. Lodato and W. Merbis, Super-BMS 3 algebras from \( \mathcal{N}=2 \) flat supergravities, JHEP 11 (2016) 150 [arXiv:1610.07506] [INSPIRE].
  16. [16]
    G. Barnich, L. Donnay, J. Matulich and R. Troncoso, Asymptotic symmetries and dynamics of three-dimensional flat supergravity, JHEP 08 (2014) 071 [arXiv:1407.4275] [INSPIRE].
  17. [17]
    O. Fuentealba, J. Matulich and R. Troncoso, Asymptotic structure of \( \mathcal{N}=2 \) supergravity in 3D: extended super-BMS 3 and nonlinear energy bounds, JHEP 09 (2017) 030 [arXiv:1706.07542] [INSPIRE].
  18. [18]
    N. Banerjee, I. Lodato and T. Neogi, N = 4 supersymmetric BMS3 algebras from asymptotic symmetry analysis, Phys. Rev. D 96 (2017) 066029 [arXiv:1706.02922] [INSPIRE].
  19. [19]
    P. Howe, J. Izquierdo, G. Papadopoulos and P.K. Townsend, New supergravities with central charges and killing spinors in 2 + 1 dimensions, Nucl. Phys. B 467 (1996) 183.Google Scholar
  20. [20]
    M. Henneaux, L. Maoz and A. Schwimmer, Asymptotic dynamics and asymptotic symmetries of three-dimensional extended AdS supergravity, Annals Phys. 282 (2000) 31 [hep-th/9910013] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    E.S. Fradkin and V.Ya. Linetsky, Results of the classification of superconformal algebras in two-dimensions, Phys. Lett. B 282 (1992) 352 [hep-th/9203045] [INSPIRE].
  22. [22]
    E.S. Fradkin and V.Ya. Linetsky, Classification of superconformal and quasisuperconformal algebras in two-dimensions, Phys. Lett. B 291 (1992) 71 [INSPIRE].
  23. [23]
    P. Bowcock, Exceptional superconformal algebras, Nucl. Phys. B 381 (1992) 415 [hep-th/9202061] [INSPIRE].
  24. [24]
    S. Carlip, Quantum gravity in 2 + 1 dimensions: the case of a closed universe, Living Rev. Rel. 8 (2005) 1 [gr-qc/0409039] [INSPIRE].
  25. [25]
    A. Achucarro and P.K. Townsend, A Chern-Simons action for three-dimensional Anti-de Sitter supergravity theories, Phys. Lett. B 180 (1986) 89 [INSPIRE].
  26. [26]
    E. Witten, 2 + 1 dimensional gravity as an exactly soluble system, Nucl. Phys. B 311 (1988) 46.Google Scholar
  27. [27]
    M. Bañados, Global charges in Chern-Simons field theory and the (2 + 1) black hole, Phys. Rev. D 52 (1996) 5816 [hep-th/9405171] [INSPIRE].
  28. [28]
    T. Regge and C. Teitelboim, Role of surface integrals in the Hamiltonian formulation of general relativity, Ann. Phys. 88 (1974) 286.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    P. Di Francesco, P. Mathieu and D. Sénéchal, Conformal field theory, Graduate texts in contemporary physics, Springer, Germany (1997).Google Scholar
  30. [30]
    R.R. Poojary and N.V. Suryanarayana, On asymptotic symmetries of 3D extended supergravities, arXiv:1712.09221 [INSPIRE].
  31. [31]
    K. Ito, Extended superconformal algebras on AdS 3, Phys. Lett. B 449 (1999) 48 [hep-th/9811002] [INSPIRE].
  32. [32]
    L. Donnay, G. Giribet, H.A. Gonzalez and M. Pino, Supertranslations and superrotations at the black hole horizon, Phys. Rev. Lett. 116 (2016) 091101 [arXiv:1511.08687] [INSPIRE].
  33. [33]
    M. Henneaux, A. Perez, D. Tempo and R. Troncoso, Hypersymmetry bounds and three-dimensional higher-spin black holes, JHEP 08 (2015) 021 [arXiv:1506.01847] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    A. Bagchi, S. Detournay and D. Grumiller, Flat-space chiral gravity, Phys. Rev. Lett. 109 (2012) 151301 [arXiv:1208.1658] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    L. Cornalba and M.S. Costa, A new cosmological scenario in string theory, Phys. Rev. D 66 (2002) 066001 [hep-th/0203031] [INSPIRE].
  36. [36]
    L. Cornalba and M.S. Costa, Time dependent orbifolds and string cosmology, Fortsch. Phys. 52 (2004) 145 [hep-th/0310099] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    M. Henneaux, A. Perez, D. Tempo and R. Troncoso, Chemical potentials in three-dimensional higher spin Anti-de Sitter gravity, JHEP 12 (2013) 048 [arXiv:1309.4362] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    M. Gary, D. Grumiller, M. Riegler and J. Rosseel, Flat space (higher spin) gravity with chemical potentials, JHEP 01 (2015) 152 [arXiv:1411.3728] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    J. Matulich, A. Perez, D. Tempo and R. Troncoso, Higher spin extension of cosmological spacetimes in 3D: asymptotically flat behaviour with chemical potentials and thermodynamics, JHEP 05 (2015) 025 [arXiv:1412.1464] [INSPIRE].
  40. [40]
    C. Bunster et al., Generalized black holes in three-dimensional spacetime, JHEP 05 (2014) 031 [arXiv:1404.3305] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. [41]
    G. Barnich, Entropy of three-dimensional asymptotically flat cosmological solutions, JHEP 10 (2012) 095 [arXiv:1208.4371] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    G.T. Horowitz and A.R. Steif, Singular string solutions with nonsingular initial data, Phys. Lett. B 258 (1991) 91 [INSPIRE].
  43. [43]
    S. Deser, R. Jackiw and G. ’t Hooft, Three-dimensional Einstein gravity: dynamics of flat space, Annals Phys. 152 (1984) 220 [INSPIRE].
  44. [44]
    S. Deser and R. Jackiw, Three-dimensional cosmological gravity: dynamics of constant curvature, Annals Phys. 153 (1984) 405 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  45. [45]
    E. Witten, Quantum field theory and the Jones polynomial, Commun. Math. Phys. 121 (1989) 351 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    G.W. Moore and N. Seiberg, Taming the conformal zoo, Phys. Lett. B 220 (1989) 422 [INSPIRE].
  47. [47]
    S. Elitzur, G.W. Moore, A. Schwimmer and N. Seiberg, Remarks on the canonical quantization of the Chern-Simons-Witten theory, Nucl. Phys. B 326 (1989) 108 [INSPIRE].
  48. [48]
    G. Barnich, A. Gomberoff and H.A. González, A 2D field theory equivalent to 3D gravity with no cosmological constant, Springer Proc. Math. Stat. 60 (2014) 135 [arXiv:1303.3568].
  49. [49]
    G. Barnich, L. Donnay, J. Matulich and R. Troncoso, Super-BMS 3 invariant boundary theory from three-dimensional flat supergravity, JHEP 01 (2017) 029 [arXiv:1510.08824] [INSPIRE].
  50. [50]
    T. He, V. Lysov, P. Mitra and A. Strominger, BMS supertranslations and Weinberg’s soft graviton theorem, JHEP 05 (2015) 151 [arXiv:1401.7026] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  51. [51]
    F. Cachazo and A. Strominger, Evidence for a new soft graviton theorem, arXiv:1404.4091 [INSPIRE].
  52. [52]
    A. Strominger and A. Zhiboedov, Gravitational memory, BMS supertranslations and soft theorems, JHEP 01 (2016) 086 [arXiv:1411.5745] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  53. [53]
    G. Barnich, Black hole entropy from non-proper gauge degrees of freedom: II. The charged vacuum capacitor, arXiv:1806.00549 [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Nabamita Banerjee
    • 1
    Email author
  • Arindam Bhattacharjee
    • 2
  • Ivano Lodato
    • 3
  • Turmoli Neogi
    • 2
  1. 1.Indian Institute of Science Education and Research BhopalBhopalIndia
  2. 2.Indian Institute of Science Education and Research PunePuneIndia
  3. 3.Department of Physics and Center for Field Theory and Particle PhysicsFudan UniversityShanghaiChina

Personalised recommendations