Advertisement

Journal of High Energy Physics

, 2019:108 | Cite as

Bubbling the NHEK

  • Pierre HeidmannEmail author
Open Access
Regular Article - Theoretical Physics
  • 2 Downloads

Abstract

We build the first family of smooth bubbling microstate geometries that are asymptotic to the near-horizon region of extremal five-dimensional Kerr black holes (NHEK). These black holes arise as extremal non-supersymmetric highly-rotating D1-D5- P solutions in type IIB string theory on T4×S1. Our solutions are asymptotically NHEK in the UV and end in the IR with a smooth cap. In the context of the Kerr/CFT correspondence, these bubbling geometries are dual to pure states of the 1+1 dimensional chiral conformal field theory dual to NHEK. Since our solutions have a bubbling structure in the IR, they correspond to an IR phase of broken conformal symmetry, and their existence supports the possibility that all the pure states whose counting gives the Kerr black hole entropy correspond to horizonless bulk configurations.

Keywords

Black Holes in String Theory AdS-CFT Correspondence 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    S.D. Mathur, The fuzzball proposal for black holes: an elementary review, Fortsch. Phys. 53 (2005) 793 [hep-th/0502050] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    I. Bena and N.P. Warner, One ring to rule them all. . . And in the darkness bind them?, Adv. Theor. Math. Phys. 9 (2005) 667 [hep-th/0408106] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    P. Berglund, E.G. Gimon and T.S. Levi, Supergravity microstates for BPS black holes and black rings, JHEP 06 (2006) 007 [hep-th/0505167] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    I. Bena and N.P. Warner, Black holes, black rings and their microstates, Lect. Notes Phys. 755 (2008) 1 [hep-th/0701216] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    I. Bena, N. Bobev, S. Giusto, C. Ruef and N.P. Warner, An infinite-dimensional family of black-hole microstate geometries, JHEP 03 (2011) 022 [Erratum ibid. 04 (2011) 059] [arXiv:1006.3497] [INSPIRE].
  6. [6]
    I. Bena, S. Giusto, R. Russo, M. Shigemori and N.P. Warner, Habemus superstratum! A constructive proof of the existence of superstrata, JHEP 05 (2015) 110 [arXiv:1503.01463] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    F. Denef and G.W. Moore, Split states, entropy enigmas, holes and halos, JHEP 11 (2011) 129 [hep-th/0702146] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    A. Sen, Walls of marginal stability and dyon spectrum in N = 4 supersymmetric string theories, JHEP 05 (2007) 039 [hep-th/0702141] [INSPIRE].
  9. [9]
    I. Bena, P. Heidmann and D. Turton, AdS 2 holography: mind the cap, arXiv:1806.02834 [INSPIRE].
  10. [10]
    J. de Boer, S. El-Showk, I. Messamah and D. Van den Bleeken, Quantizing N = 2 multicenter solutions, JHEP 05 (2009) 002 [arXiv:0807.4556] [INSPIRE].
  11. [11]
    G. Bossard and S. Katmadas, Floating JMaRT, JHEP 04 (2015) 067 [arXiv:1412.5217] [INSPIRE].
  12. [12]
    I. Bena, G. Bossard, S. Katmadas and D. Turton, Non-BPS multi-bubble microstate geometries, JHEP 02 (2016) 073 [arXiv:1511.03669] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    I. Bena, G. Bossard, S. Katmadas and D. Turton, Bolting multicenter solutions, JHEP 01 (2017) 127 [arXiv:1611.03500] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    G. Bossard, S. Katmadas and D. Turton, Two kissing bolts, JHEP 02 (2018) 008 [arXiv:1711.04784] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    M. Guica, T. Hartman, W. Song and A. Strominger, The Kerr/CFT correspondence, Phys. Rev. D 80 (2009) 124008 [arXiv:0809.4266] [INSPIRE].
  16. [16]
    S. El-Showk and M. Guica, Kerr/CFT, dipole theories and nonrelativistic CFTs, JHEP 12 (2012) 009 [arXiv:1108.6091] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    S. Detournay, T. Hartman and D.M. Hofman, Warped conformal field theory, Phys. Rev. D 86 (2012) 124018 [arXiv:1210.0539] [INSPIRE].
  18. [18]
    J.C. Breckenridge, D.A. Lowe, R.C. Myers, A.W. Peet, A. Strominger and C. Vafa, Macroscopic and microscopic entropy of near extremal spinning black holes, Phys. Lett. B 381 (1996) 423 [hep-th/9603078] [INSPIRE].
  19. [19]
    M. Cvetič and D. Youm, General rotating five-dimensional black holes of toroidally compactified heterotic string, Nucl. Phys. B 476 (1996) 118 [hep-th/9603100] [INSPIRE].
  20. [20]
    M. Cvetič and F. Larsen, Near horizon geometry of rotating black holes in five-dimensions, Nucl. Phys. B 531 (1998) 239 [hep-th/9805097] [INSPIRE].
  21. [21]
    I. Bena, M. Guica and W. Song, Un-twisting the NHEK with spectral flows, JHEP 03 (2013) 028 [arXiv:1203.4227] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    I. Bena, N. Bobev and N.P. Warner, Spectral flow and the spectrum of multi-center solutions, Phys. Rev. D 77 (2008) 125025 [arXiv:0803.1203] [INSPIRE].
  23. [23]
    I. Bena, L. Heurtier and A. Puhm, AdS 3 : the NHEK generation, JHEP 05 (2016) 120 [arXiv:1510.08055] [INSPIRE].
  24. [24]
    K. Goldstein and S. Katmadas, Almost BPS black holes, JHEP 05 (2009) 058 [arXiv:0812.4183] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    I. Bena, S. Giusto, C. Ruef and N.P. Warner, Multi-center non-BPS black holes: the solution, JHEP 11 (2009) 032 [arXiv:0908.2121] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    P. Heidmann, Four-center bubbled BPS solutions with a Gibbons-Hawking base, JHEP 10 (2017) 009 [arXiv:1703.10095] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    G. Dall’Agata, S. Giusto and C. Ruef, U-duality and non-BPS solutions, JHEP 02 (2011) 074 [arXiv:1012.4803] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    J.E. McClintock, R. Shafee, R. Narayan, R.A. Remillard, S.W. Davis and L.-X. Li, The spin of the near-extreme Kerr black hole GRS 1915 + 105, Astrophys. J. 652 (2006) 518 [astro-ph/0606076] [INSPIRE].
  29. [29]
    O.J.C. Dias, R. Emparan and A. Maccarrone, Microscopic theory of black hole superradiance, Phys. Rev. D 77 (2008) 064018 [arXiv:0712.0791] [INSPIRE].
  30. [30]
    M. Guica and A. Strominger, Microscopic realization of the Kerr/CFT correspondence, JHEP 02 (2011) 010 [arXiv:1009.5039] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  31. [31]
    W. Song and A. Strominger, D-brane construction of the 5D NHEK dual, JHEP 07 (2012) 176 [arXiv:1105.0431] [INSPIRE].
  32. [32]
    I. Bredberg, T. Hartman, W. Song and A. Strominger, Black hole superradiance from Kerr/CFT, JHEP 04 (2010) 019 [arXiv:0907.3477] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    D. Anninos, W. Li, M. Padi, W. Song and A. Strominger, Warped AdS 3 black holes, JHEP 03 (2009) 130 [arXiv:0807.3040] [INSPIRE].
  34. [34]
    D. Orlando and L.I. Uruchurtu, Warped anti-de Sitter spaces from brane intersections in type-II string theory, JHEP 06 (2010) 049 [arXiv:1003.0712] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    W. Song and A. Strominger, Warped AdS 3 /dipole-CFT duality, JHEP 05 (2012) 120 [arXiv:1109.0544] [INSPIRE].
  36. [36]
    I. Bena, G. Dall’Agata, S. Giusto, C. Ruef and N.P. Warner, Non-BPS black rings and black holes in Taub-NUT, JHEP 06 (2009) 015 [arXiv:0902.4526] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    O. Vasilakis and N.P. Warner, Mind the gap: supersymmetry breaking in scaling, microstate geometries, JHEP 10 (2011) 006 [arXiv:1104.2641] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    G.W. Gibbons and N.P. Warner, Global structure of five-dimensional fuzzballs, Class. Quant. Grav. 31 (2014) 025016 [arXiv:1305.0957] [INSPIRE].
  39. [39]
    B.E. Niehoff and H.S. Reall, Evanescent ergosurfaces and ambipolar hyper-Kähler metrics, JHEP 04 (2016) 130 [arXiv:1601.01898] [INSPIRE].ADSzbMATHGoogle Scholar
  40. [40]
    J.P. Gauntlett and J.B. Gutowski, General concentric black rings, Phys. Rev. D 71 (2005) 045002 [hep-th/0408122] [INSPIRE].
  41. [41]
    I. Bena, P. Kraus and N.P. Warner, Black rings in Taub-NUT, Phys. Rev. D 72 (2005) 084019 [hep-th/0504142] [INSPIRE].
  42. [42]
    B. Bates and F. Denef, Exact solutions for supersymmetric stationary black hole composites, JHEP 11 (2011) 127 [hep-th/0304094] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  43. [43]
    I. Bena, S. Giusto, C. Ruef and N.P. Warner, Supergravity solutions from floating branes, JHEP 03 (2010) 047 [arXiv:0910.1860] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    D. Mateos and P.K. Townsend, Supertubes, Phys. Rev. Lett. 87 (2001) 011602 [hep-th/0103030] [INSPIRE].
  45. [45]
    I. Bena, N. Bobev, C. Ruef and N.P. Warner, Supertubes in bubbling backgrounds: Born-Infeld meets supergravity, JHEP 07 (2009) 106 [arXiv:0812.2942] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  46. [46]
    S. Giusto, O. Lunin, S.D. Mathur and D. Turton, D1-D5-P microstates at the cap, JHEP 02 (2013) 050 [arXiv:1211.0306] [INSPIRE].
  47. [47]
    B. Chakrabarty, D. Turton and A. Virmani, Holographic description of non-supersymmetric orbifolded D1-D5-P solutions, JHEP 11 (2015) 063 [arXiv:1508.01231] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Institut de Physique ThéoriqueUniversité Paris Saclay, CEA, CNRSGif sur YvetteFrance

Personalised recommendations