Journal of High Energy Physics

, 2019:105 | Cite as

On the existence of an L∞ structure for the super-Virasoro algebra

  • Ralph BlumenhagenEmail author
  • Max Brinkmann
Open Access
Regular Article - Theoretical Physics


The appearance of L∞ structures for supersymmetric symmetry algebras in two-dimensional conformal field theories is investigated. Looking at the simplest concrete example of the \( \mathcal{N}=1 \) super-Virasoro algebra in detail, we investigate whether an extension to a super-L∞ algebra is sufficient to capture all appearing signs.


Conformal and W Symmetry Gauge Symmetry 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    B. Zwiebach, Closed string field theory: Quantum action and the B-V master equation, Nucl. Phys. B 390 (1993) 33 [hep-th/9206084] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    M. Alexandrov, A. Schwarz, O. Zaboronsky and M. Kontsevich, The Geometry of the master equation and topological quantum field theory, Int. J. Mod. Phys. A 12 (1997) 1405 [hep-th/9502010] [INSPIRE].
  3. [3]
    O. Hohm and B. Zwiebach, L Algebras and Field Theory, Fortsch. Phys. 65 (2017) 1700014 [arXiv:1701.08824] [INSPIRE].
  4. [4]
    R. Blumenhagen, M. Fuchs and M. Traube, \( \mathcal{W} \) algebras are L algebras, JHEP 07 (2017) 060 [arXiv:1705.00736] [INSPIRE].
  5. [5]
    R. Blumenhagen, M. Fuchs and M. Traube, On the Structure of Quantum L algebras, JHEP 10 (2017) 163 [arXiv:1706.09034] [INSPIRE].
  6. [6]
    R. Blumenhagen, I. Brunner, V. Kupriyanov and D. Lüst, Bootstrapping non-commutative gauge theories from L algebras, JHEP 05 (2018) 097 [arXiv:1803.00732] [INSPIRE].
  7. [7]
    R. Blumenhagen, M. Brinkmann, V. Kupriyanov and M. Traube, On the Uniqueness of L bootstrap: Quasi-isomorphisms are Seiberg-Witten Maps, arXiv:1806.10314 [INSPIRE].
  8. [8]
    M. Cederwall and J. Palmkvist, L algebras for extended geometry from Borcherds superalgebras, arXiv:1804.04377 [INSPIRE].
  9. [9]
    T. Lada and J. Stasheff, Introduction to SH Lie algebras for physicists, Int. J. Theor. Phys. 32 (1993) 1087 [hep-th/9209099] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    T. Lada and M. Markl, Strongly homotopy Lie algebras, hep-th/9406095 [INSPIRE].
  11. [11]
    D. Simmons-Duffin, The Conformal Bootstrap, in Proceedings of Theoretical Advanced Study Institute in Elementary Particle Physics: New Frontiers in Fields and Strings (TASI 2015), Boulder U.S.A. (2015), pg. 1 [arXiv:1602.07982] [INSPIRE].
  12. [12]
    P. Goddard, A. Kent and D.I. Olive, Unitary Representations of the Virasoro and Supervirasoro Algebras, Commun. Math. Phys. 103 (1986) 105 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  13. [13]
    J.M. Figueroa-O’Farrill and S. Schrans, The Conformal bootstrap and super \( \mathcal{W} \) algebras, Int. J. Mod. Phys. A 7 (1992) 591 [INSPIRE].
  14. [14]
    R. Blumenhagen and E. Plauschinn, Introduction to conformal field theory, Lect. Notes Phys. 779 (2009) 1 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    nLab, Super L-infinity algebra,, Revision 9 (2018).

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)MünchenGermany

Personalised recommendations