Journal of High Energy Physics

, 2019:102 | Cite as

The order p8 mesonic chiral Lagrangian

  • Johan BijnensEmail author
  • Nils Hermansson-Truedsson
  • Si Wang
Open Access
Regular Article - Theoretical Physics


We derive the chiral Lagrangian at next-to-next-to-next-to-leading order (NNNLO) for a general number Nf of light quark flavours as well as for Nf = 2, 3. We enumerate the contact terms separately. We also discuss the cases where some of the external fields are not included. An example of a choice of Lagrangian is given in the supplementary material.


Chiral Lagrangians Global Symmetries Spontaneous Symmetry Breaking 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Supplementary material


  1. [1]
    S. Weinberg, Phenomenological Lagrangians, Physica A 96 (1979) 327 [INSPIRE].
  2. [2]
    J. Gasser and H. Leutwyler, Chiral Perturbation Theory to One Loop, Annals Phys. 158 (1984) 142 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    J. Gasser and H. Leutwyler, Chiral Perturbation Theory: Expansions in the Mass of the Strange Quark, Nucl. Phys. B 250 (1985) 465 [INSPIRE].
  4. [4]
    A. Pich, Effective Field Theory with Nambu-Goldstone Modes, in Les Houches summer school: EFT in Particle Physics and Cosmology, Les Houches, Chamonix Valley, France, July 3-28, 2017 (2018) [arXiv:1804.05664] [INSPIRE].
  5. [5]
    J. Wess and B. Zumino, Consequences of anomalous Ward identities, Phys. Lett. B 37 (1971) 95 [INSPIRE].
  6. [6]
    E. Witten, Global Aspects of Current Algebra, Nucl. Phys. B 223 (1983) 422 [INSPIRE].
  7. [7]
    H.W. Fearing and S. Scherer, Extension of the chiral perturbation theory meson Lagrangian to order p 6, Phys. Rev. D 53 (1996) 315 [hep-ph/9408346] [INSPIRE].
  8. [8]
    J. Bijnens, G. Colangelo and G. Ecker, The Mesonic chiral Lagrangian of order p 6, JHEP 02 (1999) 020 [hep-ph/9902437] [INSPIRE].
  9. [9]
    J. Bijnens, L. Girlanda and P. Talavera, The Anomalous chiral Lagrangian of order p 6, Eur. Phys. J. C 23 (2002) 539 [hep-ph/0110400] [INSPIRE].
  10. [10]
    T. Ebertshauser, H.W. Fearing and S. Scherer, The Anomalous chiral perturbation theory meson Lagrangian to order p 6 revisited, Phys. Rev. D 65 (2002) 054033 [hep-ph/0110261] [INSPIRE].
  11. [11]
    J. Bijnens, G. Colangelo and G. Ecker, Renormalization of chiral perturbation theory to order p 6, Annals Phys. 280 (2000) 100 [hep-ph/9907333] [INSPIRE].
  12. [12]
    C. Haefeli, M.A. Ivanov, M. Schmid and G. Ecker, On the mesonic Lagrangian of order p 6 in chiral SU(2), arXiv:0705.0576 [INSPIRE].
  13. [13]
    P. Colangelo, J.J. Sanz-Cillero and F. Zuo, Holography, chiral Lagrangian and form factor relations, JHEP 11 (2012) 012 [arXiv:1207.5744] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    P. Ruiz-Femen´ıa and M. Zahiri-Abyaneh, On the minimality of the order p 6 chiral Lagrangian, Phys. Lett. B 751 (2015) 256 [arXiv:1507.00269] [INSPIRE].
  15. [15]
    J. Weber, Mesonic Lagrangians and Anomalous Processes, MSc Thesis, Mainz Institut für Kernphysik (2008) [].
  16. [16]
    B. Henning, X. Lu, T. Melia and H. Murayama, Operator bases, S-matrices and their partition functions, JHEP 10 (2017) 199 [arXiv:1706.08520] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    B. Gripaios and D. Sutherland, DEFT: A program for operators in EFT, arXiv:1807.07546 [INSPIRE].
  18. [18]
    C. Cheung, K. Kampf, J. Novotny, C.-H. Shen and J. Trnka, A Periodic Table of Effective Field Theories, JHEP 02 (2017) 020 [arXiv:1611.03137] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    J. Bijnens and N. Hermansson Truedsson, The Pion Mass and Decay Constant at Three Loops in Two-Flavour Chiral Perturbation Theory, JHEP 11 (2017) 181 [arXiv:1710.01901] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  20. [20]
    J. Bijnens and G. Ecker, Mesonic low-energy constants, Ann. Rev. Nucl. Part. Sci. 64 (2014) 149 [arXiv:1405.6488] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    S. Aoki et al., Review of lattice results concerning low-energy particle physics, Eur. Phys. J. C 77 (2017) 112 [arXiv:1607.00299] [INSPIRE].
  22. [22]
    J.A.M. Vermaseren, New features of FORM, math-ph/0010025 [INSPIRE].
  23. [23]
    T. Granlund, GNU Multiple Precision Arithmetic Library 6.1.2, (2016) [].
  24. [24]
    S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 1., Phys. Rev. 177 (1969) 2239 [INSPIRE].
  25. [25]
    C.G. Callan Jr., S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 2., Phys. Rev. 177 (1969) 2247 [INSPIRE].
  26. [26]
    J. Bijnens, A. Bramon and F. Cornet, Chiral Perturbation Theory for Anomalous Processes, Z. Phys. C 46 (1990) 599 [INSPIRE].
  27. [27]
    D.B. Kaplan and A.V. Manohar, Current Mass Ratios of the Light Quarks, Phys. Rev. Lett. 56 (1986) 2004 [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    S. Scherer and H.W. Fearing, Field transformations and the classical equation of motion in chiral perturbation theory, Phys. Rev. D 52 (1995) 6445 [hep-ph/9408298] [INSPIRE].
  29. [29]
    J.A. Schouten, Ueber die geometrische Deutung von gewöhnlichen ρ-Vektoren und W-ρ-Vektoren und den korrespondierenden Dichten, Proc. Kon. Ned. Akad. v. Wet. 41 (1938) 709.Google Scholar
  30. [30]
    G. ’t Hooft, A Planar Diagram Theory for Strong Interactions, Nucl. Phys. B 72 (1974) 461 [INSPIRE].
  31. [31]
    J. Bijnens and I. Jemos, Relations at Order p 6 in Chiral Perturbation Theory, Eur. Phys. J. C 64 (2009) 273 [arXiv:0906.3118] [INSPIRE].
  32. [32]
    J. Bijnens and J. Lu, Meson-meson Scattering in QCD-like Theories, JHEP 03 (2011) 028 [arXiv:1102.0172] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  33. [33]
    R.S. Chivukula, M.J. Dugan and M. Golden, Analyticity, crossing symmetry and the limits of chiral perturbation theory, Phys. Rev. D 47 (1993) 2930 [hep-ph/9206222] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of Astronomy and Theoretical PhysicsLund UniversityLundSweden

Personalised recommendations