Advertisement

Journal of High Energy Physics

, 2019:101 | Cite as

Type-II seesaw scalar triplet model at a 100 TeV pp collider: discovery and higgs portal coupling determination

  • Yong DuEmail author
  • Aaron Dunbrack
  • Michael J. Ramsey-Musolf
  • Jiang-Hao Yu
Open Access
Regular Article - Experimental Physics
  • 6 Downloads

Abstract

We investigate the collider phenomenology of the scalar triplet particles in the Type-II seesaw model at a 100 TeV pp collider. Depending on triplet vacuum expectation value vΔ, the dominant discovery channels could be H++H−− and H±±H. We find the H±±HW±W±hW/ℓ±±hW channels are promising for both model discovery at relatively large vΔ and determination of the Higgs portal couplings λ4 and λ5. We also find that these two channels are complementary to indirect determination of λ4 from future precise measurements on hγγ decay rate. Together with pair production of the doubly-charged Higgs subsequently decaying into same-sign di-leptons, the H±±H channels have the potential to cover a significant portion of the parameter space of the Type-II seesaw complex scalar triplet model.

Keywords

Beyond Standard Model Hadron-Hadron scattering (experiments) Higgs physics 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    P. Minkowski, μeγ at a Rate of One Out of 109 Muon Decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].
  2. [2]
    P. Ramond, The Family Group in Grand Unified Theories, in International Symposium on Fundamentals of Quantum Theory and Quantum Field Theory Palm Coast, Florida, February 25-March 2, 1979, pp. 265-280 (1979) [hep-ph/9809459] [INSPIRE].
  3. [3]
    M. Gell-Mann, P. Ramond and R. Slansky, Complex Spinors and Unified Theories, Conf. Proc. C 790927 (1979) 315 [arXiv:1306.4669] [INSPIRE].
  4. [4]
    T. Yanagida, Horizontal gauge symmetry and masses of neutrinos, Conf. Proc. C 7902131 (1979) 95 [INSPIRE].
  5. [5]
    R.N. Mohapatra and G. Senjanović, Neutrino Mass and Spontaneous Parity Nonconservation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  6. [6]
    J. Schechter and J.W.F. Valle, Neutrino Masses in SU(2) × U(1) Theories, Phys. Rev. D 22 (1980) 2227 [INSPIRE].
  7. [7]
    J. Schechter and J.W.F. Valle, Neutrino Decay and Spontaneous Violation of Lepton Number, Phys. Rev. D 25 (1982) 774 [INSPIRE].
  8. [8]
    W. Konetschny and W. Kummer, Nonconservation of Total Lepton Number with Scalar Bosons, Phys. Lett. B 70 (1977) 433 [INSPIRE].
  9. [9]
    T.P. Cheng and L.-F. Li, Neutrino Masses, Mixings and Oscillations in SU(2) × U(1) Models of Electroweak Interactions, Phys. Rev. D 22 (1980) 2860 [INSPIRE].
  10. [10]
    G. Lazarides, Q. Shafi and C. Wetterich, Proton Lifetime and Fermion Masses in an SO(10) Model, Nucl. Phys. B 181 (1981) 287 [INSPIRE].
  11. [11]
    M. Magg and C. Wetterich, Neutrino Mass Problem and Gauge Hierarchy, Phys. Lett. B 94 (1980) 61 [INSPIRE].
  12. [12]
    R. Foot, H. Lew, X.G. He and G.C. Joshi, Seesaw Neutrino Masses Induced by a Triplet of Leptons, Z. Phys. C 44 (1989) 441 [INSPIRE].
  13. [13]
    E. Witten, New Issues in Manifolds of SU(3) Holonomy, Nucl. Phys. B 268 (1986) 79 [INSPIRE].
  14. [14]
    R.N. Mohapatra, Mechanism for Understanding Small Neutrino Mass in Superstring Theories, Phys. Rev. Lett. 56 (1986) 561 [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    R.N. Mohapatra and J.W.F. Valle, Neutrino Mass and Baryon Number Nonconservation in Superstring Models, Phys. Rev. D 34 (1986) 1642 [INSPIRE].
  16. [16]
    J.W.F. Valle, Aspects of superstring models of quarks and leptons, in Nuclear beta decays and neutrino. Proceedings, International symposium, Osaka, Japan, June 11-13, 1986 (1986) [INSPIRE].
  17. [17]
    S.M. Barr, A Different seesaw formula for neutrino masses, Phys. Rev. Lett. 92 (2004) 101601 [hep-ph/0309152] [INSPIRE].
  18. [18]
    R.N. Mohapatra and G. Senjanović, Neutrino Masses and Mixings in Gauge Models with Spontaneous Parity Violation, Phys. Rev. D 23 (1981) 165 [INSPIRE].
  19. [19]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
  20. [20]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
  21. [21]
    W. Chao, M. Gonderinger and M.J. Ramsey-Musolf, Higgs Vacuum Stability, Neutrino Mass and Dark Matter, Phys. Rev. D 86 (2012) 113017 [arXiv:1210.0491] [INSPIRE].
  22. [22]
    N. Haba, H. Ishida, N. Okada and Y. Yamaguchi, Vacuum stability and naturalness in type-II seesaw, Eur. Phys. J. C 76 (2016) 333 [arXiv:1601.05217] [INSPIRE].
  23. [23]
    E.J. Chun, H.M. Lee and P. Sharma, Vacuum Stability, Perturbativity, EWPD and Higgs-to-diphoton rate in Type II Seesaw Models, JHEP 11 (2012) 106 [arXiv:1209.1303] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    C. Bonilla, R.M. Fonseca and J.W.F. Valle, Consistency of the triplet seesaw model revisited, Phys. Rev. D 92 (2015) 075028 [arXiv:1508.02323] [INSPIRE].
  25. [25]
    Y. Aoki, F. Csikor, Z. Fodor and A. Ukawa, The Endpoint of the first order phase transition of the SU(2) gauge Higgs model on a four-dimensional isotropic lattice, Phys. Rev. D 60 (1999) 013001 [hep-lat/9901021] [INSPIRE].
  26. [26]
    K. Rummukainen, M. Tsypin, K. Kajantie, M. Laine and M.E. Shaposhnikov, The Universality class of the electroweak theory, Nucl. Phys. B 532 (1998) 283 [hep-lat/9805013] [INSPIRE].
  27. [27]
    F. Csikor, Z. Fodor and J. Heitger, Endpoint of the hot electroweak phase transition, Phys. Rev. Lett. 82 (1999) 21 [hep-ph/9809291] [INSPIRE].
  28. [28]
    M. Laine and K. Rummukainen, What’s new with the electroweak phase transition?, Nucl. Phys. Proc. Suppl. 73 (1999) 180 [hep-lat/9809045] [INSPIRE].
  29. [29]
    M. Gurtler, E.-M. Ilgenfritz and A. Schiller, Where the electroweak phase transition ends, Phys. Rev. D 56 (1997) 3888 [hep-lat/9704013] [INSPIRE].
  30. [30]
    K. Kajantie, M. Laine, K. Rummukainen and M.E. Shaposhnikov, Generic rules for high temperature dimensional reduction and their application to the standard model, Nucl. Phys. B 458 (1996) 90 [hep-ph/9508379] [INSPIRE].
  31. [31]
    J.C. Pati and A. Salam, Lepton Number as the Fourth Color, Phys. Rev. D 10 (1974) 275 [Erratum ibid. D 11 (1975) 703] [INSPIRE].
  32. [32]
    R.N. Mohapatra and J.C. Pati, A Natural Left-Right Symmetry, Phys. Rev. D 11 (1975) 2558 [INSPIRE].
  33. [33]
    G. Senjanović and R.N. Mohapatra, Exact Left-Right Symmetry and Spontaneous Violation of Parity, Phys. Rev. D 12 (1975) 1502 [INSPIRE].
  34. [34]
    A. Maiezza, G. Senjanović and J.C. Vasquez, Higgs sector of the minimal left-right symmetric theory, Phys. Rev. D 95 (2017) 095004 [arXiv:1612.09146] [INSPIRE].
  35. [35]
    Q.-H. Cao, Z. Li, J.-H. Yu and C.P. Yuan, Discovery and Identification of W’ and Z’ in SU(2) × SU(2) × U(1) Models at the LHC, Phys. Rev. D 86 (2012) 095010 [arXiv:1205.3769] [INSPIRE].
  36. [36]
    K. Hsieh, K. Schmitz, J.-H. Yu and C.P. Yuan, Global Analysis of General SU(2) × SU(2) × U(1) Models with Precision Data, Phys. Rev. D 82 (2010) 035011 [arXiv:1003.3482] [INSPIRE].
  37. [37]
    P.S.B. Dev, R.N. Mohapatra and Y. Zhang, Probing the Higgs Sector of the Minimal Left-Right Symmetric Model at Future Hadron Colliders, JHEP 05 (2016) 174 [arXiv:1602.05947] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    D.-W. Jung and K.Y. Lee, Production of the charged Higgs bosons at the CERN Large Hadron Collider in the left-right symmetric model, Phys. Rev. D 78 (2008) 015022 [arXiv:0802.1572] [INSPIRE].
  39. [39]
    G. Barenboim, Footprints of a left-right symmetric model in a muon collider, Phys. Lett. B 482 (2000) 123 [INSPIRE].
  40. [40]
    K. Huitu, J. Maalampi, A. Pietila, M. Raidal and R. Vuopionpera, Testing the left-right symmetric model at linear collider, hep-ph/9701386 [INSPIRE].
  41. [41]
    M. Cvetič, P. Langacker and B. Kayser, Determination of gR/gL in left-right symmetric models at hadron colliders, Phys. Rev. Lett. 68 (1992) 2871 [INSPIRE].
  42. [42]
    J.A. Grifols, A. Mendez and R.M. Barnett, Searching for Z-prime and W-prime bosons of left-right symmetric models at high-energy colliders, Phys. Rev. D 40 (1989) 3613 [INSPIRE].
  43. [43]
    N. Quintero, Lepton-number-violating decays of heavy flavors induced by doubly-charged Higgs boson, Phys. Rev. D 87 (2013) 056005 [arXiv:1212.3016] [INSPIRE].
  44. [44]
    S. Kanemura, K. Yagyu and H. Yokoya, First constraint on the mass of doubly-charged Higgs bosons in the same-sign diboson decay scenario at the LHC, Phys. Lett. B 726 (2013) 316 [arXiv:1305.2383] [INSPIRE].
  45. [45]
    E.J. Chun and P. Sharma, Search for a doubly-charged boson in four lepton final states in type-II seesaw, Phys. Lett. B 728 (2014) 256 [arXiv:1309.6888] [INSPIRE].
  46. [46]
    K. Yagyu, Doubly-charged Higgs bosons in the diboson decay scenario at the ILC, in International Workshop on Future Linear Colliders (LCWS13), Tokyo, Japan, November 11-15, 2013 (2014) [arXiv:1405.5149] [INSPIRE].
  47. [47]
    S. Kanemura, M. Kikuchi, K. Yagyu and H. Yokoya, Bounds on the mass of doubly-charged Higgs bosons in the same-sign diboson decay scenario, Phys. Rev. D 90 (2014) 115018 [arXiv:1407.6547] [INSPIRE].
  48. [48]
    M. Muhlleitner and M. Spira, A Note on doubly charged Higgs pair production at hadron colliders, Phys. Rev. D 68 (2003) 117701 [hep-ph/0305288] [INSPIRE].
  49. [49]
    E.J. Chun and P. Sharma, Same-Sign Tetra-Leptons from Type II Seesaw, JHEP 08 (2012) 162 [arXiv:1206.6278] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    S. Kanemura, M. Kikuchi, H. Yokoya and K. Yagyu, LHC Run-I constraint on the mass of doubly charged Higgs bosons in the same-sign diboson decay scenario, PTEP 2015 (2015) 051B02 [arXiv:1412.7603] [INSPIRE].
  51. [51]
    E.J. Chun and P. Sharma, Same-sign tetra-leptons in type-II seesaw at the LHC, in Proceedings, 1st Toyama International Workshop on Higgs as a Probe of New Physics 2013 (HPNP2013), Toyama, Japan, February 13-16 2013 (2013) [arXiv:1304.5059] [INSPIRE].
  52. [52]
    C.-W. Chiang, T. Nomura and K. Tsumura, Search for doubly charged Higgs bosons using the same-sign diboson mode at the LHC, Phys. Rev. D 85 (2012) 095023 [arXiv:1202.2014] [INSPIRE].
  53. [53]
    D.K. Ghosh, N. Ghosh, I. Saha and A. Shaw, Revisiting the high-scale validity of the type-II seesaw model with novel LHC signature, Phys. Rev. D 97 (2018) 115022 [arXiv:1711.06062] [INSPIRE].
  54. [54]
    M. Mitra, S. Niyogi and M. Spannowsky, Type-II Seesaw Model and Multilepton Signatures at Hadron Colliders, Phys. Rev. D 95 (2017) 035042 [arXiv:1611.09594] [INSPIRE].
  55. [55]
    C.-S. Chen, C.-Q. Geng, D. Huang and L.-H. Tsai, hZγ in Type-II seesaw neutrino model, Phys. Lett. B 723 (2013) 156 [arXiv:1302.0502] [INSPIRE].
  56. [56]
    P.S. Bhupal Dev, D.K. Ghosh, N. Okada and I. Saha, 125 GeV Higgs Boson and the Type-II Seesaw Model, JHEP 03 (2013) 150 [Erratum ibid. 05 (2013) 049] [arXiv:1301.3453] [INSPIRE].
  57. [57]
    A.G. Akeroyd and H. Sugiyama, Production of doubly charged scalars from the decay of singly charged scalars in the Higgs Triplet Model, Phys. Rev. D 84 (2011) 035010 [arXiv:1105.2209] [INSPIRE].
  58. [58]
    C.-X. Yue, X.-S. Su, J. Zhang and J. Wang, Single production of the doubly charged Higgs boson via eγ collision in the Higgs triplet model, Commun. Theor. Phys. 56 (2011) 709 [arXiv:1010.4633] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  59. [59]
    A.G. Akeroyd and M. Aoki, Single and pair production of doubly charged Higgs bosons at hadron colliders, Phys. Rev. D 72 (2005) 035011 [hep-ph/0506176] [INSPIRE].
  60. [60]
    A.G. Akeroyd and S. Moretti, Enhancement of H to gamma gamma from doubly charged scalars in the Higgs Triplet Model, Phys. Rev. D 86 (2012) 035015 [arXiv:1206.0535] [INSPIRE].
  61. [61]
    A.G. Akeroyd and S. Moretti, Production of doubly charged scalars from the decay of a heavy SM-like Higgs boson in the Higgs Triplet Model, Phys. Rev. D 84 (2011) 035028 [arXiv:1106.3427] [INSPIRE].
  62. [62]
    J.F. Ong, I.A. Jalil and W.A. Tajuddin Wan Abdullah, Charged Higgs boson contribution to \( {\overline{\nu}}_e-e \) scattering from low to ultrahigh energy in Higgs triplet model, Int. J. Theor. Phys. 52 (2013) 679 [arXiv:1103.5273] [INSPIRE].
  63. [63]
    A.G. Akeroyd and C.-W. Chiang, Doubly charged Higgs bosons and three-lepton signatures in the Higgs Triplet Model, Phys. Rev. D 80 (2009) 113010 [arXiv:0909.4419] [INSPIRE].
  64. [64]
    K. Huitu, T.J. Kärkkäinen, J. Maalampi and S. Vihonen, Effects of triplet Higgs bosons in long baseline neutrino experiments, Phys. Rev. D 97 (2018) 095037 [arXiv:1711.02971] [INSPIRE].
  65. [65]
    A. Biswas, All about H ±± in Higgs Triplet Model, arXiv:1702.03847 [INSPIRE].
  66. [66]
    D. Das and A. Santamaria, Updated scalar sector constraints in the Higgs triplet model, Phys. Rev. D 94 (2016) 015015 [arXiv:1604.08099] [INSPIRE].
  67. [67]
    M. Kikuchi, Radiative corrections to the Higgs boson couplings in the Higgs triplet model, in Proceedings, 1st Toyama International Workshop on Higgs as a Probe of New Physics 2013 (HPNP2013), Toyama, Japan, February 13-16, 2013 (2013) [arXiv:1305.0109] [INSPIRE].
  68. [68]
    M. Aoki, S. Kanemura, M. Kikuchi and K. Yagyu, Radiative corrections to the Higgs boson couplings in the triplet model, Phys. Rev. D 87 (2013) 015012 [arXiv:1211.6029] [INSPIRE].
  69. [69]
    M. Aoki, S. Kanemura, M. Kikuchi and K. Yagyu, Renormalization of the Higgs Sector in the Triplet Model, Phys. Lett. B 714 (2012) 279 [arXiv:1204.1951] [INSPIRE].
  70. [70]
    A. Arhrib, R. Benbrik, M. Chabab, G. Moultaka and L. Rahili, hγγ Coupling in Higgs Triplet Model, in International Workshop on Future Linear Colliders (LCWS11), Granada, Spain, September 26-30, 2011 (2012) [arXiv:1202.6621] [INSPIRE].
  71. [71]
    S. Kanemura and K. Yagyu, Radiative corrections to electroweak parameters in the Higgs triplet model and implication with the recent Higgs boson searches, Phys. Rev. D 85 (2012) 115009 [arXiv:1201.6287] [INSPIRE].
  72. [72]
    M. Aoki, S. Kanemura and K. Yagyu, Testing the Higgs triplet model with the mass difference at the LHC, Phys. Rev. D 85 (2012) 055007 [arXiv:1110.4625] [INSPIRE].
  73. [73]
    W. Rodejohann and H. Zhang, Higgs triplets at like-sign linear colliders and neutrino mixing, Phys. Rev. D 83 (2011) 073005 [arXiv:1011.3606] [INSPIRE].
  74. [74]
    C.-S. Chen and C.-M. Lin, Type II Seesaw Higgs Triplet as the inflaton for Chaotic Inflation and Leptogenesis, Phys. Lett. B 695 (2011) 9 [arXiv:1009.5727] [INSPIRE].
  75. [75]
    T. Fukuyama, H. Sugiyama and K. Tsumura, Constraints from muon g − 2 and LFV processes in the Higgs Triplet Model, JHEP 03 (2010) 044 [arXiv:0909.4943] [INSPIRE].
  76. [76]
    H. Nishiura and T. Fukuyama, Determination of the unknown absolute neutrino mass and MNS parameters at the LHC in the Higgs triplet model, arXiv:0909.0595 [INSPIRE].
  77. [77]
    H. Nishiura and T. Fukuyama, Measuring the lower bound of neutrino mass at LHC in Higgs Triplet Model, Phys. Rev. D 80 (2009) 017302 [arXiv:0905.3963] [INSPIRE].
  78. [78]
    A.G. Akeroyd, M. Aoki and H. Sugiyama, Lepton Flavour Violating Decays \( \tau \to \overline{l}ll \) and μeγ in the Higgs Triplet Model, Phys. Rev. D 79 (2009) 113010 [arXiv:0904.3640] [INSPIRE].
  79. [79]
    S.T. Petcov, H. Sugiyama and Y. Takanishi, Neutrinoless Double Beta Decay and H ±±l ′± l ± Decays in the Higgs Triplet Model, Phys. Rev. D 80 (2009) 015005 [arXiv:0904.0759] [INSPIRE].
  80. [80]
    R. Godbole, B. Mukhopadhyaya and M. Nowakowski, Triplet Higgs bosons at e + e colliders, Phys. Lett. B 352 (1995) 388 [hep-ph/9411324] [INSPIRE].
  81. [81]
    I. Gogoladze, N. Okada and Q. Shafi, Higgs boson mass bounds in a type-II seesaw model with triplet scalars, Phys. Rev. D 78 (2008) 085005 [arXiv:0802.3257] [INSPIRE].
  82. [82]
    A.G. Akeroyd, M. Aoki and H. Sugiyama, Probing Majorana Phases and Neutrino Mass Spectrum in the Higgs Triplet Model at the CERN LHC, Phys. Rev. D 77 (2008) 075010 [arXiv:0712.4019] [INSPIRE].
  83. [83]
    J. Garayoa and T. Schwetz, Neutrino mass hierarchy and Majorana CP phases within the Higgs triplet model at the LHC, JHEP 03 (2008) 009 [arXiv:0712.1453] [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    E. Ma and U. Sarkar, Connecting dark energy to neutrinos with an observable Higgs triplet, Phys. Lett. B 638 (2006) 356 [hep-ph/0602116] [INSPIRE].
  85. [85]
    C.A. de S. Pires, Explicitly broken lepton number at low energy in the Higgs triplet model, Mod. Phys. Lett. A 21 (2006) 971 [hep-ph/0509152] [INSPIRE].
  86. [86]
    M. Kakizaki, Y. Ogura and F. Shima, Lepton flavor violation in the triplet Higgs model, Phys. Lett. B 566 (2003) 210 [hep-ph/0304254] [INSPIRE].
  87. [87]
    R.A. Alanakian, Triplet Higgs bosons production in e e collisions, Phys. Lett. B 436 (1998) 139 [hep-ph/9706383] [INSPIRE].
  88. [88]
    J.A. Coarasa Perez, A. Mendez and J. Solà, Higgs triplet effects in purely leptonic processes, Phys. Lett. B 374 (1996) 131 [hep-ph/9511297] [INSPIRE].
  89. [89]
    A. Arhrib, R. Benbrik, G. Moultaka and L. Rahili, Type II Seesaw Higgsology and LEP/LHC constraints, arXiv:1411.5645 [INSPIRE].
  90. [90]
    F. Arbabifar, S. Bahrami and M. Frank, Neutral Higgs Bosons in the Higgs Triplet Model with nontrivial mixing, Phys. Rev. D 87 (2013) 015020 [arXiv:1211.6797] [INSPIRE].
  91. [91]
    Z.-L. Han, R. Ding and Y. Liao, LHC Phenomenology of Type II Seesaw: Nondegenerate Case, Phys. Rev. D 91 (2015) 093006 [arXiv:1502.05242] [INSPIRE].
  92. [92]
    A.G. Akeroyd and C.-W. Chiang, Phenomenology of Large Mixing for the CP-even Neutral Scalars of the Higgs Triplet Model, Phys. Rev. D 81 (2010) 115007 [arXiv:1003.3724] [INSPIRE].
  93. [93]
    A.G. Akeroyd, S. Moretti and H. Sugiyama, Five-lepton and six-lepton signatures from production of neutral triplet scalars in the Higgs Triplet Model, Phys. Rev. D 85 (2012) 055026 [arXiv:1201.5047] [INSPIRE].
  94. [94]
    A.G. Akeroyd and S. Moretti, Enhancement of Hγγ from charged Higgs bosons in the Higgs Triplet Model, PoS(CHARGED2012)035 (2012) [arXiv:1210.6882] [INSPIRE].
  95. [95]
    F. del Águila and M. Chala, LHC bounds on Lepton Number Violation mediated by doubly and singly-charged scalars, JHEP 03 (2014) 027 [arXiv:1311.1510] [INSPIRE].CrossRefGoogle Scholar
  96. [96]
    J. Cao and J.-F. Shen, Pair production of doubly charged Higgs boson at photon linear collider in the Higgs triplet model, Mod. Phys. Lett. A 29 (2014) 1450041 [INSPIRE].
  97. [97]
    J.F. Shen and J. Cao, Pair production of charged and doubly charged Higgs bosons at ILC in the Higgs triplet model, J. Phys. G 41 (2014) 105003 [INSPIRE].
  98. [98]
    Z.-L. Han, R. Ding and Y. Liao, LHC phenomenology of the type-II seesaw mechanism: Observability of neutral scalars in the nondegenerate case, Phys. Rev. D 92 (2015) 033014 [arXiv:1506.08996] [INSPIRE].
  99. [99]
    Y.-P. Bi and J.-F. Shen, Production of singly and doubly charged Higgs bosons at the TeV energy e γ colliders, EPL 110 (2015) 41001 [INSPIRE].
  100. [100]
    J.-F. Shen, Y.-P. Bi, Y. Yu and Y.-J. Zhang, Production of singly and doubly charged Higgs bosons from Higgs triplet model at future linear colliders, Int. J. Mod. Phys. A 30 (2015) 1550096 [INSPIRE].
  101. [101]
    J.-F. Shen and Z.-X. Li, Doubly charged Higgs bosons pair production through WW fusion at high-energy e + e linear colliders, EPL 111 (2015) 31001 [INSPIRE].
  102. [102]
    J.-F. Shen, Y.-P. Bi and Z.-X. Li, Pair production of scalars at the ILC in the Higgs triplet model under the non-degenerate case, EPL 112 (2015) 31002 [INSPIRE].ADSCrossRefGoogle Scholar
  103. [103]
    J. Cao and X.-Y. Tian, Doubly and singly charged Higgs pair production at high-energy e+elinear colliders, Int. J. Mod. Phys. A 31 (2016) 1650056 [INSPIRE].
  104. [104]
    A. Melfo, M. Nemevšek, F. Nesti, G. Senjanović and Y. Zhang, Type II Seesaw at LHC: The Roadmap, Phys. Rev. D 85 (2012) 055018 [arXiv:1108.4416] [INSPIRE].
  105. [105]
    Z.-z. Xing and J.-y. Zhu, Leptonic Unitarity Triangles and Effective Mass Triangles of the Majorana Neutrinos, Nucl. Phys. B 908 (2016) 302 [arXiv:1511.00450] [INSPIRE].
  106. [106]
    K. Yagyu, Testing the Higgs Model with Triplet Fields at the ILC, in International Workshop on Future Linear Colliders (LCWS11), Granada, Spain, September 26-30, 2011 (2011) [arXiv:1111.5832] [INSPIRE].
  107. [107]
    Z. Kang, J. Li, T. Li, Y. Liu and G.-Z. Ning, Light Doubly Charged Higgs Boson via the WW Channel at LHC, Eur. Phys. J. C 75 (2015) 574 [arXiv:1404.5207] [INSPIRE].
  108. [108]
    C. Bonilla, J.C. Romão and J.W.F. Valle, Electroweak breaking and neutrino mass: ‘invisible’ Higgs decays at the LHC (type-II seesaw), New J. Phys. 18 (2016) 033033 [arXiv:1511.07351] [INSPIRE].
  109. [109]
    P. Fileviez Perez, T. Han, G.-y. Huang, T. Li and K. Wang, Neutrino Masses and the CERN LHC: Testing Type II Seesaw, Phys. Rev. D 78 (2008) 015018 [arXiv:0805.3536] [INSPIRE].
  110. [110]
    V.D. Barger, H. Baer, W.-Y. Keung and R.J.N. Phillips, Decays of Weak Vector Bosons and T Quarks Into Doubly Charged Higgs Scalars, Phys. Rev. D 26 (1982) 218 [INSPIRE].
  111. [111]
    J.F. Gunion, J. Grifols, A. Mendez, B. Kayser and F.I. Olness, Higgs Bosons in Left-Right Symmetric Models, Phys. Rev. D 40 (1989) 1546 [INSPIRE].
  112. [112]
    T. Han, B. Mukhopadhyaya, Z. Si and K. Wang, Pair production of doubly-charged scalars: Neutrino mass constraints and signals at the LHC, Phys. Rev. D 76 (2007) 075013 [arXiv:0706.0441] [INSPIRE].
  113. [113]
    K. Huitu, J. Maalampi, A. Pietila and M. Raidal, Doubly charged Higgs at LHC, Nucl. Phys. B 487 (1997) 27 [hep-ph/9606311] [INSPIRE].
  114. [114]
    B. Dion, T. Gregoire, D. London, L. Marleau and H. Nadeau, Bilepton production at hadron colliders, Phys. Rev. D 59 (1999) 075006 [hep-ph/9810534] [INSPIRE].
  115. [115]
    P.S.B. Dev, C.M. Vila and W. Rodejohann, Naturalness in testable type-II seesaw scenarios, Nucl. Phys. B 921 (2017) 436 [arXiv:1703.00828] [INSPIRE].
  116. [116]
    Y. Sui and Y. Zhang, Prospects of type-II seesaw models at future colliders in light of the DAMPE e + e excess, Phys. Rev. D 97 (2018) 095002 [arXiv:1712.03642] [INSPIRE].
  117. [117]
    P. Agrawal, M. Mitra, S. Niyogi, S. Shil and M. Spannowsky, Probing the Type-II Seesaw Mechanism through the Production of Higgs Bosons at a Lepton Collider, Phys. Rev. D 98 (2018) 015024 [arXiv:1803.00677] [INSPIRE].
  118. [118]
    Y. Cai, T. Han, T. Li and R. Ruiz, Lepton Number Violation: Seesaw Models and Their Collider Tests, Front. in Phys. 6 (2018) 40 [arXiv:1711.02180] [INSPIRE].ADSCrossRefGoogle Scholar
  119. [119]
    T. Li, Type II Seesaw and tau lepton at the HL-LHC, HE-LHC and FCC-hh, JHEP 09 (2018) 079 [arXiv:1802.00945] [INSPIRE].ADSCrossRefGoogle Scholar
  120. [120]
    P.-H. Gu and H.-J. He, TeV Scale Neutrino Mass Generation, Minimal Inelastic Dark Matter and High Scale Leptogenesis, arXiv:1808.09377 [INSPIRE].
  121. [121]
    K.S. Babu and S. Jana, Probing Doubly Charged Higgs Bosons at the LHC through Photon Initiated Processes, Phys. Rev. D 95 (2017) 055020 [arXiv:1612.09224] [INSPIRE].
  122. [122]
    ATLAS collaboration, Search for anomalous production of prompt like-sign muon pairs and constraints on physics beyond the Standard Model with the ATLAS detector, Phys. Rev. D 85 (2012) 032004 [arXiv:1201.1091] [INSPIRE].
  123. [123]
    CDF collaboration, Search for new physics in high p T like-sign dilepton events at CDF II, Phys. Rev. Lett. 107 (2011) 181801 [arXiv:1108.0101] [INSPIRE].
  124. [124]
    ATLAS collaboration, Search for anomalous production of prompt like-sign lepton pairs at \( \sqrt{s}=7 \) TeV with the ATLAS detector, JHEP 12 (2012) 007 [arXiv:1210.4538] [INSPIRE].
  125. [125]
    ATLAS collaboration, Search for doubly-charged Higgs bosons in like-sign dilepton final states at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Eur. Phys. J. C 72 (2012) 2244 [arXiv:1210.5070] [INSPIRE].
  126. [126]
    ATLAS collaboration, Search for new phenomena in events with three or more charged leptons in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 08 (2015) 138 [arXiv:1411.2921] [INSPIRE].
  127. [127]
    ATLAS collaboration, Search for anomalous production of prompt same-sign lepton pairs and pair-produced doubly charged Higgs bosons with \( \sqrt{s}=8 \) TeV pp collisions using the ATLAS detector, JHEP 03 (2015) 041 [arXiv:1412.0237] [INSPIRE].
  128. [128]
    ATLAS collaboration, Search for heavy long-lived multi-charged particles in pp collisions at \( \sqrt{s}=8 \) TeV using the ATLAS detector, Eur. Phys. J. C 75 (2015) 362[arXiv:1504.04188] [INSPIRE].
  129. [129]
    CMS collaboration, Observation of electroweak production of same-sign W boson pairs in the two jet and two same-sign lepton final state in proton-proton collisions at \( \sqrt{s}=13 \) TeV, Phys. Rev. Lett. 120 (2018) 081801 [arXiv:1709.05822] [INSPIRE].
  130. [130]
    ATLAS collaboration, Search for doubly charged Higgs boson production in multi-lepton final states with the ATLAS detector using proton-proton collisions at \( \sqrt{s}=13 \) T eV , Eur. Phys. J. C 78 (2018) 199 [arXiv:1710.09748] [INSPIRE].
  131. [131]
    A. Arhrib et al., The Higgs Potential in the Type II Seesaw Model, Phys. Rev. D 84 (2011) 095005 [arXiv:1105.1925] [INSPIRE].
  132. [132]
    P. Dey, A. Kundu and B. Mukhopadhyaya, Some consequences of a Higgs triplet, J. Phys. G 36 (2009) 025002 [arXiv:0802.2510] [INSPIRE].
  133. [133]
    Particle Data Group collaboration, Review of Particle Physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].
  134. [134]
    W. Chao and H. Zhang, One-loop renormalization group equations of the neutrino mass matrix in the triplet seesaw model, Phys. Rev. D 75 (2007) 033003 [hep-ph/0611323] [INSPIRE].
  135. [135]
    M.A. Schmidt, Renormalization group evolution in the type-I+ II seesaw model, Phys. Rev. D 76 (2007) 073010 [Erratum ibid. D 85 (2012) 099903] [arXiv:0705.3841] [INSPIRE].
  136. [136]
    M.E. Machacek and M.T. Vaughn, Two Loop Renormalization Group Equations in a General Quantum Field Theory. 1. Wave Function Renormalization, Nucl. Phys. B 222 (1983) 83 [INSPIRE].
  137. [137]
    M.E. Machacek and M.T. Vaughn, Two Loop Renormalization Group Equations in a General Quantum Field Theory. 2. Yukawa Couplings, Nucl. Phys. B 236 (1984) 221 [INSPIRE].
  138. [138]
    M.E. Machacek and M.T. Vaughn, Two Loop Renormalization Group Equations in a General Quantum Field Theory. 3. Scalar Quartic Couplings, Nucl. Phys. B 249 (1985) 70 [INSPIRE].
  139. [139]
    C. Ford, I. Jack and D.R.T. Jones, The Standard model effective potential at two loops, Nucl. Phys. B 387 (1992) 373 [Erratum ibid. B 504 (1997) 551] [hep-ph/0111190] [INSPIRE].
  140. [140]
    H. Arason et al., Renormalization group study of the standard model and its extensions. 1. The Standard model, Phys. Rev. D 46 (1992) 3945 [INSPIRE].
  141. [141]
    V.D. Barger, M.S. Berger and P. Ohmann, Supersymmetric grand unified theories: Two loop evolution of gauge and Yukawa couplings, Phys. Rev. D 47 (1993) 1093 [hep-ph/9209232] [INSPIRE].
  142. [142]
    M.-x. Luo and Y. Xiao, Two loop renormalization group equations in the standard model, Phys. Rev. Lett. 90 (2003) 011601 [hep-ph/0207271] [INSPIRE].
  143. [143]
    M. Gonderinger, H. Lim and M.J. Ramsey-Musolf, Complex Scalar Singlet Dark Matter: Vacuum Stability and Phenomenology, Phys. Rev. D 86 (2012) 043511 [arXiv:1202.1316] [INSPIRE].
  144. [144]
    K. Riesselmann and S. Willenbrock, Ruling out a strongly interacting standard Higgs model, Phys. Rev. D 55 (1997) 311 [hep-ph/9608280] [INSPIRE].
  145. [145]
    T. Hambye and K. Riesselmann, Matching conditions and Higgs mass upper bounds revisited, Phys. Rev. D 55 (1997) 7255 [hep-ph/9610272] [INSPIRE].
  146. [146]
    S.M. Bilenky and S.T. Petcov, Massive Neutrinos and Neutrino Oscillations, Rev. Mod. Phys. 59 (1987) 671 [Erratum ibid. 61 (1989) 169] [INSPIRE].
  147. [147]
    Planck collaboration, Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].
  148. [148]
    A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].
  149. [149]
    N.D. Christensen and C. Duhr, FeynRules — Feynman rules made easy, Comput. Phys. Commun. 180 (2009) 1614 [arXiv:0806.4194] [INSPIRE].ADSCrossRefGoogle Scholar
  150. [150]
    C. Degrande, C. Duhr, B. Fuks, D. Grellscheid, O. Mattelaer and T. Reiter, UFO — The Universal FeynRules Output, Comput. Phys. Commun. 183 (2012) 1201 [arXiv:1108.2040] [INSPIRE].ADSCrossRefGoogle Scholar
  151. [151]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  152. [152]
    ATLAS collaboration, Search for charged Higgs bosons produced in association with a top quark and decaying via H ±τ ν using pp collision data recorded at \( \sqrt{s}=13 \) TeV by the ATLAS detector, Phys. Lett. B 759 (2016) 555 [arXiv:1603.09203] [INSPIRE].
  153. [153]
    CMS collaboration, Search for Charged Higgs Bosons Produced via Vector Boson Fusion and Decaying into a Pair of W and Z Bosons Using pp Collisions at \( \sqrt{s}=13 \) TeV, Phys. Rev. Lett. 119 (2017) 141802 [arXiv:1705.02942] [INSPIRE].
  154. [154]
    CMS collaboration, Search for neutral resonances decaying into a Z boson and a pair of b jets or τ leptons, Phys. Lett. B 759 (2016) 369 [arXiv:1603.02991] [INSPIRE].
  155. [155]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].
  156. [156]
    DELPHES 3 collaboration, DELPHES 3, A modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].
  157. [157]
  158. [158]
    I. Antcheva et al., ROOT: A C++ framework for petabyte data storage, statistical analysis and visualization, Comput. Phys. Commun. 180 (2009) 2499 [arXiv:1508.07749] [INSPIRE].ADSCrossRefGoogle Scholar
  159. [159]
    A. Hocker et al., TMVA — Toolkit for Multivariate Data Analysis, physics/0703039 [INSPIRE].
  160. [160]
    B.P. Roe, H.-J. Yang, J. Zhu, Y. Liu, I. Stancu and G. McGregor, Boosted decision trees, an alternative to artificial neural networks, Nucl. Instrum. Meth. A 543 (2005) 577 [physics/0408124] [INSPIRE].
  161. [161]
  162. [162]
    M. Benedikt and F. Zimmermann, The Future Circular Collider study, CERN Courier 2014 [http://cerncourier.com/cws/article/cern/56603].
  163. [163]
    OPAL collaboration, A Search for doubly charged Higgs production in Z0 decays, Phys. Lett. B 295 (1992) 347 [INSPIRE].
  164. [164]
    OPAL collaboration, Search for doubly charged Higgs bosons with the OPAL detector at LEP, Phys. Lett. B 526 (2002) 221 [hep-ex/0111059] [INSPIRE].
  165. [165]
    A. Arhrib, R. Benbrik, M. Chabab, G. Moultaka and L. Rahili, Higgs boson decay into 2 photons in the type II Seesaw Model, JHEP 04 (2012) 136 [arXiv:1112.5453] [INSPIRE].ADSCrossRefGoogle Scholar
  166. [166]
    ATLAS and CMS collaborations, Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at \( \sqrt{s}=7 \) and 8 TeV, JHEP 08 (2016) 045 [arXiv:1606.02266] [INSPIRE].
  167. [167]
    R. Contino et al., Physics at a 100 TeV pp collider: Higgs and EW symmetry breaking studies, CERN Yellow Report (2017) 255 [arXiv:1606.09408] [INSPIRE].
  168. [168]
    M. Carena, S. Heinemeyer, C.E.M. Wagner and G. Weiglein, Suggestions for benchmark scenarios for MSSM Higgs boson searches at hadron colliders, Eur. Phys. J. C 26 (2003) 601 [hep-ph/0202167] [INSPIRE].
  169. [169]
    ATLAS collaboration, Search for charged Higgs bosons decaying via H +τ ν in top quark pair events using pp collision data at \( \sqrt{s}=7 \) TeV with the ATLAS detector, JHEP 06 (2012) 039 [arXiv:1204.2760] [INSPIRE].
  170. [170]
    ATLAS collaboration, Search for charged Higgs bosons through the violation of lepton universality in tt events using pp collision data at \( \sqrt{s}=7 \) TeV with the ATLAS experiment, JHEP 03 (2013) 076 [arXiv:1212.3572] [INSPIRE].
  171. [171]
    ATLAS collaboration, Search for a light charged Higgs boson in the decay channel \( {H}^{+}\to c\overline{s} \) in \( t\overline{t} \) events using pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Eur. Phys. J. C 73 (2013) 2465 [arXiv:1302.3694] [INSPIRE].
  172. [172]
    ATLAS collaboration, Search for charged Higgs bosons decaying via H ±τ ± ν in fully hadronic final states using pp collision data at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 03 (2015) 088 [arXiv:1412.6663] [INSPIRE].
  173. [173]
    ATLAS collaboration, Search for a Charged Higgs Boson Produced in the Vector-Boson Fusion Mode with Decay H ±W ± Z using pp Collisions at \( \sqrt{s}=8 \) TeV with the ATLAS Experiment, Phys. Rev. Lett. 114 (2015) 231801 [arXiv:1503.04233] [INSPIRE].
  174. [174]
    R.N. Mohapatra and J.C. Pati, Left-Right Gauge Symmetry and an Isoconjugate Model of CP-violation, Phys. Rev. D 11 (1975) 566 [INSPIRE].
  175. [175]
    T.G. Rizzo, Doubly Charged Higgs Bosons and Lepton Number Violating Processes, Phys. Rev. D 25 (1982) 1355 [INSPIRE].
  176. [176]
    ATLAS collaboration, Search for neutral Higgs bosons of the minimal supersymmetric standard model in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 11 (2014) 056 [arXiv:1409.6064] [INSPIRE].
  177. [177]
    ATLAS collaboration, Search for a CP-odd Higgs boson decaying to Zh in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Lett. B 744 (2015) 163 [arXiv:1502.04478] [INSPIRE].
  178. [178]
    CMS collaboration, Search for a pseudoscalar boson decaying into a Z boson and the 125 GeV Higgs boson in \( {\ell}^{+}{\ell}^{-}b\overline{b} \) final states, Phys. Lett. B 748 (2015) 221 [arXiv:1504.04710] [INSPIRE].
  179. [179]
    ATLAS collaboration, Search for an additional, heavy Higgs boson in the HZZ decay channel at \( \sqrt{s}=8 \) T eV in pp collision data with the ATLAS detector, Eur. Phys. J. C 76 (2016) 45 [arXiv:1507.05930] [INSPIRE].
  180. [180]
    ATLAS collaboration, Search for a high-mass Higgs boson decaying to a W boson pair in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 01 (2016) 032 [arXiv:1509.00389] [INSPIRE].
  181. [181]
    ATLAS collaboration, Constraints on new phenomena via Higgs boson couplings and invisible decays with the ATLAS detector, JHEP 11 (2015) 206 [arXiv:1509.00672] [INSPIRE].
  182. [182]
    CMS collaboration, Searches for a heavy scalar boson H decaying to a pair of 125 GeV Higgs bosons hh or for a heavy pseudoscalar boson A decaying to Zh, in the final states with hττ, Phys. Lett. B 755 (2016) 217 [arXiv:1510.01181] [INSPIRE].
  183. [183]
    ATLAS collaboration, Search for Heavy Higgs Bosons A/H Decaying to a Top Quark Pair in pp Collisions at \( \sqrt{s}=8 \) TeV with the ATLAS Detector, Phys. Rev. Lett. 119 (2017) 191803 [arXiv:1707.06025] [INSPIRE].
  184. [184]
    ATLAS collaboration, Search for heavy resonances decaying to a W or Z boson and a Higgs boson in the \( q{\overline{q}}^{\left(\prime \right)}b\overline{b} \) final state in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Lett. B 774 (2017) 494 [arXiv:1707.06958] [INSPIRE].
  185. [185]
    ATLAS collaboration, Searches for heavy ZZ and ZW resonances in the ℓℓqq and ννqq final states in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, JHEP 03 (2018) 009 [arXiv:1708.09638] [INSPIRE].
  186. [186]
    ATLAS collaboration, Search for additional heavy neutral Higgs and gauge bosons in the ditau final state produced in 36 fb −1 of pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, JHEP 01 (2018) 055 [arXiv:1709.07242] [INSPIRE].
  187. [187]
    ATLAS collaboration, A search for resonances decaying into a Higgs boson and a new particle X in the XHqqbb final state with the ATLAS detector, Phys. Lett. B 779 (2018) 24 [arXiv:1709.06783] [INSPIRE].
  188. [188]
    ATLAS collaboration, Search for heavy resonances decaying into a W or Z boson and a Higgs boson in final states with leptons and b-jets in 36 fb −1 of \( \sqrt{s}=13 \) TeV pp collisions with the ATLAS detector, JHEP 03 (2018) 174 [Erratum ibid. 11 (2018) 051] [arXiv:1712.06518] [INSPIRE].
  189. [189]
    ATLAS collaboration, Search for a heavy Higgs boson decaying into a Z boson and another heavy Higgs boson in the ℓℓbb final state in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Lett. B 783 (2018) 392 [arXiv:1804.01126] [INSPIRE].
  190. [190]
    CMS collaboration, Search for a new scalar resonance decaying to a pair of Z bosons in proton-proton collisions at \( \sqrt{s}=13 \) TeV, JHEP 06 (2018) 127 [arXiv:1804.01939] [INSPIRE].
  191. [191]
    CMS collaboration, Search for \( \mathrm{t}\overline{\mathrm{t}}H \) production in the \( H\to \mathrm{b}\overline{\mathrm{b}} \) decay channel with leptonic tt decays in proton-proton collisions at \( \sqrt{s}=13 \) TeV, arXiv:1804.03682 [INSPIRE].
  192. [192]
    A. Djouadi, The Anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model, Phys. Rept. 459 (2008) 1 [hep-ph/0503173] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Amherst Center for Fundamental Interactions, Physics DepartmentUniversity of Massachusetts AmherstAmherstU.S.A.
  2. 2.Department of Physics and AstronomyStony Brook UniversityStony BrookU.S.A.
  3. 3.Kellogg Radiation LaboratoryCalifornia Institute of TechnologyPasadenaU.S.A.
  4. 4.CAS Key Laboratory of Theoretical Physics, Institute of Theoretical PhysicsChinese Academy of SciencesBeijingP.R. China
  5. 5.School of Physical SciencesUniversity of Chinese Academy of SciencesBeijingP.R. China

Personalised recommendations