The Sudakov radiator for jet observables and the soft physical coupling

  • Andrea BanfiEmail author
  • Basem Kamal El-Menoufi
  • Pier Francesco Monni
Open Access
Regular Article - Theoretical Physics


We present a procedure to calculate the Sudakov radiator for a generic recursive infrared and collinear (rIRC) safe observable whose distribution is characterised by two widely separated momentum scales. We give closed formulae for the radiator at next-to-next-to-leading-logarithmic (NNLL) accuracy, which completes the general NNLL resummation for this class of observables in the ARES method for processes with two emitters at the Born level. As a byproduct, we define a physical coupling in the soft limit, and we provide an explicit expression for its relation to the \( \overline{\mathrm{MS}} \) coupling up to \( \mathcal{O}\left({\alpha}_s^3\right) \). This physical coupling constitutes one of the ingredients for a NNLL accurate parton shower algorithm. As an application we obtain analytic NNLL results, of which several are new, for all angularities τx defined with respect to both the thrust axis and the winner-take-all axis, and for the moments of energy-energy correlation FCx in e+e annihilation. For the latter observables we find that, for some values of x, an accurate prediction of the peak of the differential distribution requires a simultaneous resummation of the logarithmic terms originating from the two-jet limit and at the Sudakov shoulder.


Perturbative QCD Resummation 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    Particle Data Group collaboration, Review of particle physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].
  2. [2]
    M. Dasgupta and G.P. Salam, Resummation of nonglobal QCD observables, Phys. Lett. B 512 (2001) 323 [hep-ph/0104277] [INSPIRE].
  3. [3]
    M. Dasgupta and G.P. Salam, Accounting for coherence in interjet E t flow: a case study, JHEP 03 (2002) 017 [hep-ph/0203009] [INSPIRE].
  4. [4]
    A. Banfi, G. Marchesini and G. Smye, Away from jet energy flow, JHEP 08 (2002) 006 [hep-ph/0206076] [INSPIRE].
  5. [5]
    A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover and G. Heinrich, NNLO corrections to event shapes in e + e annihilation, JHEP 12 (2007) 094 [arXiv:0711.4711] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover and G. Heinrich, Jet rates in electron-positron annihilation at O(α s3) in QCD, Phys. Rev. Lett. 100 (2008) 172001 [arXiv:0802.0813] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    S. Weinzierl, NNLO corrections to 3-jet observables in electron-positron annihilation, Phys. Rev. Lett. 101 (2008) 162001 [arXiv:0807.3241] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    S. Weinzierl, Event shapes and jet rates in electron-positron annihilation at NNLO, JHEP 06 (2009) 041 [arXiv:0904.1077] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    V. Del Duca et al., Jet production in the CoLoRFulNNLO method: event shapes in electron-positron collisions, Phys. Rev. D 94 (2016) 074019 [arXiv:1606.03453] [INSPIRE].ADSGoogle Scholar
  10. [10]
    J.C. Collins, D.E. Soper and G.F. Sterman, Transverse momentum distribution in Drell-Yan pair and W and Z boson production, Nucl. Phys. B 250 (1985) 199 [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    S. Catani, L. Trentadue, G. Turnock and B.R. Webber, Resummation of large logarithms in e + e event shape distributions, Nucl. Phys. B 407 (1993) 3 [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    R. Bonciani, S. Catani, M.L. Mangano and P. Nason, Sudakov resummation of multiparton QCD cross-sections, Phys. Lett. B 575 (2003) 268 [hep-ph/0307035] [INSPIRE].
  13. [13]
    S. Catani, G. Turnock, B.R. Webber and L. Trentadue, Thrust distribution in e + e annihilation, Phys. Lett. B 263 (1991) 491 [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    S. Catani, G. Turnock and B.R. Webber, Heavy jet mass distribution in e + e annihilation, Phys. Lett. B 272 (1991) 368 [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    S. Catani and B.R. Webber, Resummed C parameter distribution in e + e annihilation, Phys. Lett. B 427 (1998) 377 [hep-ph/9801350] [INSPIRE].
  16. [16]
    Y.L. Dokshitzer, A. Lucenti, G. Marchesini and G.P. Salam, On the QCD analysis of jet broadening, JHEP 01 (1998) 011 [hep-ph/9801324] [INSPIRE].
  17. [17]
    A. Banfi, G.P. Salam and G. Zanderighi, Principles of general final-state resummation and automated implementation, JHEP 03 (2005) 073 [hep-ph/0407286] [INSPIRE].
  18. [18]
    A. Banfi, G.P. Salam and G. Zanderighi, Generalized resummation of QCD final state observables, Phys. Lett. B 584 (2004) 298 [hep-ph/0304148] [INSPIRE].
  19. [19]
    A. Banfi, G.P. Salam and G. Zanderighi, Semi-numerical resummation of event shapes, JHEP 01 (2002) 018 [hep-ph/0112156] [INSPIRE].
  20. [20]
    A. Banfi, G.P. Salam and G. Zanderighi, Resummed event shapes at hadron-hadron colliders, JHEP 08 (2004) 062 [hep-ph/0407287] [INSPIRE].
  21. [21]
    A. Banfi, G.P. Salam and G. Zanderighi, Phenomenology of event shapes at hadron colliders, JHEP 06 (2010) 038 [arXiv:1001.4082] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  22. [22]
    T. Becher and M.D. Schwartz, A precise determination of α s from LEP thrust data using effective field theory, JHEP 07 (2008) 034 [arXiv:0803.0342] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    R. Abbate, M. Fickinger, A.H. Hoang, V. Mateu and I.W. Stewart, Thrust at N 3 LL with power corrections and a precision global fit for α s(m Z), Phys. Rev. D 83 (2011) 074021 [arXiv:1006.3080] [INSPIRE].ADSGoogle Scholar
  24. [24]
    P.F. Monni, T. Gehrmann and G. Luisoni, Two-loop soft corrections and resummation of the thrust distribution in the dijet region, JHEP 08 (2011) 010 [arXiv:1105.4560] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  25. [25]
    Y.-T. Chien and M.D. Schwartz, Resummation of heavy jet mass and comparison to LEP data, JHEP 08 (2010) 058 [arXiv:1005.1644] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  26. [26]
    T. Becher and G. Bell, NNLL resummation for jet broadening, JHEP 11 (2012) 126 [arXiv:1210.0580] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    A.H. Hoang, D.W. Kolodrubetz, V. Mateu and I.W. Stewart, C-parameter distribution at N 3 LL’ including power corrections, Phys. Rev. D 91 (2015) 094017 [arXiv:1411.6633] [INSPIRE].ADSGoogle Scholar
  28. [28]
    D. de Florian and M. Grazzini, The back-to-back region in e + e energy-energy correlation, Nucl. Phys. B 704 (2005) 387 [hep-ph/0407241] [INSPIRE].
  29. [29]
    Z. Tulipánt, A. Kardos and G. Somogyi, Energy-energy correlation in electron-positron annihilation at NNLL + NNLO accuracy, Eur. Phys. J. C 77 (2017) 749 [arXiv:1708.04093] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    I. Moult and H.X. Zhu, Simplicity from recoil: the three-loop soft function and factorization for the energy-energy correlation, JHEP 08 (2018) 160 [arXiv:1801.02627] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    C. Frye, A.J. Larkoski, M.D. Schwartz and K. Yan, Precision physics with pile-up insensitive observables, arXiv:1603.06375 [INSPIRE].
  32. [32]
    M. Procura, W.J. Waalewijn and L. Zeune, Joint resummation of two angularities at next-to-next-to-leading logarithmic order, JHEP 10 (2018) 098 [arXiv:1806.10622] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    S. Moch, B. Ruijl, T. Ueda, J.A.M. Vermaseren and A. Vogt, On quartic colour factors in splitting functions and the gluon cusp anomalous dimension, Phys. Lett. B 782 (2018) 627 [arXiv:1805.09638] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    D. Kang, C. Lee and I.W. Stewart, Using 1-jettiness to measure 2 jets in DIS 3 ways, Phys. Rev. D 88 (2013) 054004 [arXiv:1303.6952] [INSPIRE].ADSGoogle Scholar
  35. [35]
    Z.-B. Kang, X. Liu, S. Mantry and J.-W. Qiu, Probing nuclear dynamics in jet production with a global event shape, Phys. Rev. D 88 (2013) 074020 [arXiv:1303.3063] [INSPIRE].ADSGoogle Scholar
  36. [36]
    Z.-B. Kang, X. Liu and S. Mantry, 1-jettiness DIS event shape: NNLL+NLO results, Phys. Rev. D 90 (2014) 014041 [arXiv:1312.0301] [INSPIRE].ADSGoogle Scholar
  37. [37]
    G. Bozzi, S. Catani, D. de Florian and M. Grazzini, Transverse-momentum resummation and the spectrum of the Higgs boson at the LHC, Nucl. Phys. B 737 (2006) 73 [hep-ph/0508068] [INSPIRE].
  38. [38]
    T. Becher and M. Neubert, Drell-Yan production at small q T , transverse parton distributions and the collinear anomaly, Eur. Phys. J. C 71 (2011) 1665 [arXiv:1007.4005] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    A. Banfi, M. Dasgupta and S. Marzani, QCD predictions for new variables to study dilepton transverse momenta at hadron colliders, Phys. Lett. B 701 (2011) 75 [arXiv:1102.3594] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, The beam thrust cross section for Drell-Yan at NNLL order, Phys. Rev. Lett. 106 (2011) 032001 [arXiv:1005.4060] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    C.F. Berger, C. Marcantonini, I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, Higgs production with a central jet veto at NNLL + NNLO, JHEP 04 (2011) 092 [arXiv:1012.4480] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    T. Becher, X. Garcia i Tormo and J. Piclum, Next-to-next-to-leading logarithmic resummation for transverse thrust, Phys. Rev. D 93 (2016) 054038 [Erratum ibid. D 93 (2016) 079905] [arXiv:1512.00022] [INSPIRE].
  43. [43]
    T. Becher and M. Neubert, Factorization and NNLL resummation for Higgs production with a jet veto, JHEP 07 (2012) 108 [arXiv:1205.3806] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    T. Becher, M. Neubert and L. Rothen, Factorization and N 3 LL p +NNLO predictions for the Higgs cross section with a jet veto, JHEP 10 (2013) 125 [arXiv:1307.0025] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    A. Banfi, P.F. Monni, G.P. Salam and G. Zanderighi, Higgs and Z-boson production with a jet veto, Phys. Rev. Lett. 109 (2012) 202001 [arXiv:1206.4998] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    I.W. Stewart, F.J. Tackmann, J.R. Walsh and S. Zuberi, Jet p T resummation in Higgs production at NNLL’+NNLO, Phys. Rev. D 89 (2014) 054001 [arXiv:1307.1808] [INSPIRE].ADSGoogle Scholar
  47. [47]
    H.X. Zhu, C.S. Li, H.T. Li, D.Y. Shao and L.L. Yang, Transverse-momentum resummation for top-quark pairs at hadron colliders, Phys. Rev. Lett. 110 (2013) 082001 [arXiv:1208.5774] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    S. Catani, M. Grazzini and A. Torre, Transverse-momentum resummation for heavy-quark hadroproduction, Nucl. Phys. B 890 (2014) 518 [arXiv:1408.4564] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  49. [49]
    T.T. Jouttenus, I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, The soft function for exclusive N-jet production at hadron colliders, Phys. Rev. D 83 (2011) 114030 [arXiv:1102.4344] [INSPIRE].ADSGoogle Scholar
  50. [50]
    W. Bizoń, P.F. Monni, E. Re, L. Rottoli and P. Torrielli, Momentum-space resummation for transverse observables and the Higgs p at N 3 LL+NNLO, JHEP 02 (2018) 108 [arXiv:1705.09127] [INSPIRE].ADSGoogle Scholar
  51. [51]
    W. Bizoń et al., Fiducial distributions in Higgs and Drell-Yan production at N 3 LL+NNLO, JHEP 12 (2018) 132 [arXiv:1805.05916] [INSPIRE].Google Scholar
  52. [52]
    X. Chen et al., Precise QCD description of the Higgs boson transverse momentum spectrum, Phys. Lett. B 788 (2019) 425 [arXiv:1805.00736] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    A. Banfi, H. McAslan, P.F. Monni and G. Zanderighi, A general method for the resummation of event-shape distributions in e + e annihilation, JHEP 05 (2015) 102 [arXiv:1412.2126] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    A. Banfi, H. McAslan, P.F. Monni and G. Zanderighi, The two-jet rate in e + e at next-to-next-to-leading-logarithmic order, Phys. Rev. Lett. 117 (2016) 172001 [arXiv:1607.03111] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    S. Catani, B.R. Webber and G. Marchesini, QCD coherent branching and semiinclusive processes at large x, Nucl. Phys. B 349 (1991) 635 [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    E. Laenen, G.F. Sterman and W. Vogelsang, Recoil and threshold corrections in short distance cross-sections, Phys. Rev. D 63 (2001) 114018 [hep-ph/0010080] [INSPIRE].
  57. [57]
    L.J. Dixon, L. Magnea and G.F. Sterman, Universal structure of subleading infrared poles in gauge theory amplitudes, JHEP 08 (2008) 022 [arXiv:0805.3515] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    J. Frenkel and J.C. Taylor, Non-Abelian eikonal exponentiation, Nucl. Phys. B 246 (1984) 231 [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    J.G.M. Gatheral, Exponentiation of eikonal cross-sections in non-Abelian gauge theories, Phys. Lett. B 133 (1983) 90 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  60. [60]
    S. Catani and M. Grazzini, The soft gluon current at one loop order, Nucl. Phys. B 591 (2000) 435 [hep-ph/0007142] [INSPIRE].
  61. [61]
    F.A. Berends and W.T. Giele, Multiple soft gluon radiation in parton processes, Nucl. Phys. B 313 (1989) 595 [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    Y. Li and H.X. Zhu, Single soft gluon emission at two loops, JHEP 11 (2013) 080 [arXiv:1309.4391] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    Z. Nagy and D.E. Soper, Parton shower evolution with subleading color, JHEP 06 (2012) 044 [arXiv:1202.4496] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    R. Ángeles Martínez, M. De Angelis, J.R. Forshaw, S. Plätzer and M.H. Seymour, Soft gluon evolution and non-global logarithms, JHEP 05 (2018) 044 [arXiv:1802.08531] [INSPIRE].
  65. [65]
    S. Jadach, A. Kusina, M. Skrzypek and M. Slawinska, Monte Carlo modelling of NLO DGLAP QCD evolution in the fully unintegrated form, Nucl. Phys. Proc. Suppl. 205-206 (2010) 295 [arXiv:1007.2437] [INSPIRE].
  66. [66]
    S. Höche, F. Krauss and S. Prestel, Implementing NLO DGLAP evolution in parton showers, JHEP 10 (2017) 093 [arXiv:1705.00982] [INSPIRE].CrossRefGoogle Scholar
  67. [67]
    S. Höche and S. Prestel, Triple collinear emissions in parton showers, Phys. Rev. D 96 (2017) 074017 [arXiv:1705.00742] [INSPIRE].ADSGoogle Scholar
  68. [68]
    F. Dulat, S. Höche and S. Prestel, Leading-color fully differential two-loop soft corrections to QCD dipole showers, Phys. Rev. D 98 (2018) 074013 [arXiv:1805.03757] [INSPIRE].ADSGoogle Scholar
  69. [69]
    H.T. Li and P. Skands, A framework for second-order parton showers, Phys. Lett. B 771 (2017) 59 [arXiv:1611.00013] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  70. [70]
    M. Dasgupta, F.A. Dreyer, K. Hamilton, P.F. Monni and G.P. Salam, Logarithmic accuracy of parton showers: a fixed-order study, JHEP 09 (2018) 033 [arXiv:1805.09327] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    C.F. Berger, T. Kucs and G.F. Sterman, Event shape/energy flow correlations, Phys. Rev. D 68 (2003) 014012 [hep-ph/0303051] [INSPIRE].
  72. [72]
    A.J. Larkoski, D. Neill and J. Thaler, Jet shapes with the broadening axis, JHEP 04 (2014) 017 [arXiv:1401.2158] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    A.J. Larkoski, G.P. Salam and J. Thaler, Energy correlation functions for jet substructure, JHEP 06 (2013) 108 [arXiv:1305.0007] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  74. [74]
    S. Catani and B.R. Webber, Infrared safe but infinite: soft gluon divergences inside the physical region, JHEP 10 (1997) 005 [hep-ph/9710333] [INSPIRE].
  75. [75]
    S. Catani and M.H. Seymour, A general algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. B 510 (1998) 503] [hep-ph/9605323] [INSPIRE].
  76. [76]
    S. Catani, L. Trentadue, G. Turnock and B.R. Webber, Resummation of large logarithms in e + e event shape distributions, Nucl. Phys. B 407 (1993) 3 [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    C.W. Bauer and P.F. Monni, A numerical formulation of resummation in effective field theory, arXiv:1803.07079 [INSPIRE].
  78. [78]
    P.F. Monni, E. Re and P. Torrielli, Higgs transverse-momentum resummation in direct space, Phys. Rev. Lett. 116 (2016) 242001 [arXiv:1604.02191] [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    G. Bell, A. Hornig, C. Lee and J. Talbert, e + e angularity distributions at NNLL’ accuracy, arXiv:1808.07867 [INSPIRE].
  80. [80]
    Y.L. Dokshitzer, A. Lucenti, G. Marchesini and G.P. Salam, Universality of 1/Q corrections to jet-shape observables rescued, Nucl. Phys. B 511 (1998) 396 [Erratum ibid. B 593 (2001) 729] [hep-ph/9707532] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Andrea Banfi
    • 1
    Email author
  • Basem Kamal El-Menoufi
    • 1
  • Pier Francesco Monni
    • 2
  1. 1.Department of Physics and AstronomyUniversity of SussexBrightonU.K.
  2. 2.CERN, Theoretical Physics DepartmentGeneva 23Switzerland

Personalised recommendations