Same-sign multilepton signatures of an SU(2)R quintuplet at the LHC

  • Sanjib Kumar Agarwalla
  • Kirtiman Ghosh
  • Nilanjana Kumar
  • Ayon Patra
Open Access
Regular Article - Theoretical Physics


We study in detail the collider signatures of an SU(2)R fermionic quintuplet in the framework of left-right symmetric model in the context of the 13 TeV LHC. Apart from giving a viable dark matter candidate (χ0), this model provides unique collider imprints in the form of same-sign multileptons through the decays of multi-charged components of the quintuplet. In particular, we consider the scenario where the quintuplet carries (BL) = 4 charge, allowing for the presence of high charge-multiplicity particles with relatively larger mass differences among them compared to (BL) = 0 or 2. In this paper, we mainly focus on the same-sign n-lepton signatures (nSSL). We show that with an integrated luminosity of 500 fb−1, the mass of the neutral component, \( {M}_{\chi^0} \) ≤ 480 (800) GeV can be excluded at 95% CL in the 2SSL (3SSL) channel after imposing several selection criteria. We also show that a 5σ discovery is also achievable if \( {M}_{\chi^0} \) ≤ 390 (750) GeV in the 2SSL (3SSL) channel with 1000 fb−1 integrated luminosity.


Beyond Standard Model Higgs Physics 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    P. Ko and T. Nomura, SU(2)L × SU(2)R minimal dark matter with 2 TeV W′, Phys. Lett. B 753 (2016) 612 [arXiv:1510.07872] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    S.K. Agarwalla, K. Ghosh and A. Patra, LHC diphoton excess in a left-right symmetric model with minimal dark matter, arXiv:1607.03878 [INSPIRE].
  3. [3]
    S. Kumar Agarwalla, K. Ghosh and A. Patra, Sub-TeV quintuplet minimal dark matter with left-right symmetry, JHEP 05 (2018) 123 [arXiv:1803.01670] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    M. Cirelli, N. Fornengo and A. Strumia, Minimal dark matter, Nucl. Phys. B 753 (2006) 178 [hep-ph/0512090] [INSPIRE].
  5. [5]
    J. Heeck and S. Patra, Minimal left-right symmetric dark matter, Phys. Rev. Lett. 115 (2015) 121804 [arXiv:1507.01584] [INSPIRE].
  6. [6]
    C. Garcia-Cely and J. Heeck, Phenomenology of left-right symmetric dark matter, arXiv:1512.03332 [INSPIRE].
  7. [7]
    N. Maru, N. Okada and S. Okada, Fermionic minimal dark matter in 5D gauge-Higgs unification, Phys. Rev. D 96 (2017) 115023 [arXiv:1801.00686] [INSPIRE].ADSGoogle Scholar
  8. [8]
    B. Ostdiek, Constraining the minimal dark matter fiveplet with LHC searches, Phys. Rev. D 92 (2015) 055008 [arXiv:1506.03445] [INSPIRE].
  9. [9]
    K. Kumericki, I. Picek and B. Radovcic, TeV-scale seesaw with quintuplet fermions, Phys. Rev. D 86 (2012) 013006 [arXiv:1204.6599] [INSPIRE].ADSGoogle Scholar
  10. [10]
    Y. Yu, C.-X. Yue and S. Yang, Signatures of the quintuplet leptons at the LHC, Phys. Rev. D 91 (2015) 093003 [arXiv:1502.02801] [INSPIRE].
  11. [11]
    R.N. Mohapatra and J.C. Pati, Left-right gauge symmetry and an isoconjugate model of CP-violation, Phys. Rev. D 11 (1975) 566 [INSPIRE].ADSGoogle Scholar
  12. [12]
    G. Senjanović and R.N. Mohapatra, Exact left-right symmetry and spontaneous violation of parity, Phys. Rev. D 12 (1975) 1502 [INSPIRE].ADSGoogle Scholar
  13. [13]
    M.A.B. Beg and H.S. Tsao, Strong P, T noninvariances in a superweak theory, Phys. Rev. Lett. 41 (1978) 278 [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    R.N. Mohapatra and G. Senjanović, Natural suppression of strong P and T noninvariance, Phys. Lett. B 79 (1978) 283 [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    K.S. Babu and R.N. Mohapatra, A solution to the strong CP problem without an axion, Phys. Rev. D 41 (1990) 1286 [INSPIRE].ADSGoogle Scholar
  16. [16]
    S.M. Barr, D. Chang and G. Senjanović, Strong CP problem and parity, Phys. Rev. Lett. 67 (1991) 2765 [INSPIRE].
  17. [17]
    R.N. Mohapatra and A. Rasin, Simple supersymmetric solution to the strong CP problem, Phys. Rev. Lett. 76 (1996) 3490 [hep-ph/9511391] [INSPIRE].
  18. [18]
    R. Kuchimanchi, Solution to the strong CP problem: supersymmetry with parity, Phys. Rev. Lett. 76 (1996) 3486 [hep-ph/9511376] [INSPIRE].
  19. [19]
    R.N. Mohapatra, A. Rasin and G. Senjanović, P, C and strong CP in left-right supersymmetric models, Phys. Rev. Lett. 79 (1997) 4744 [hep-ph/9707281] [INSPIRE].
  20. [20]
    K.S. Babu, B. Dutta and R.N. Mohapatra, Solving the strong CP and the SUSY phase problems with parity symmetry, Phys. Rev. D 65 (2002) 016005 [hep-ph/0107100] [INSPIRE].
  21. [21]
    R. Kuchimanchi, P/CP conserving CP/P violation solves strong CP problem, Phys. Rev. D 82 (2010) 116008 [arXiv:1009.5961] [INSPIRE].
  22. [22]
    R.D. Peccei and H.R. Quinn, CP conservation in the presence of instantons, Phys. Rev. Lett. 38 (1977) 1440 [INSPIRE].
  23. [23]
    B. Mukhopadhyaya and S. Mukhopadhyay, Same-sign trileptons and four-leptons as signatures of new physics at the CERN Large Hadron Collider, Phys. Rev. D 82 (2010) 031501 [arXiv:1005.3051] [INSPIRE].ADSGoogle Scholar
  24. [24]
    S. Mukhopadhyay and B. Mukhopadhyaya, Same-sign trileptons at the LHC: a window to lepton-number violating supersymmetry, Phys. Rev. D 84 (2011) 095001 [arXiv:1108.4921] [INSPIRE].ADSGoogle Scholar
  25. [25]
    G. Bambhaniya, J. Chakrabortty, S. Goswami and P. Konar, Generation of neutrino mass from new physics at TeV scale and multilepton signatures at the LHC, Phys. Rev. D 88 (2013) 075006 [arXiv:1305.2795] [INSPIRE].
  26. [26]
    E.J. Chun and P. Sharma, Same-sign tetra-leptons from type II seesaw, JHEP 08 (2012) 162 [arXiv:1206.6278] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    CMS collaboration, Search for physics beyond the Standard Model in events with two leptons of same sign, missing transverse momentum and jets in proton-proton collisions at \( \sqrt{s}=13 \) TeV, Eur. Phys. J. C 77 (2017) 578 [arXiv:1704.07323] [INSPIRE].
  28. [28]
    ATLAS collaboration, Inclusive search for same-sign dilepton signatures in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, JHEP 10 (2011) 107 [arXiv:1108.0366] [INSPIRE].
  29. [29]
    ATLAS collaboration, Search for squarks and gluinos in events with isolated leptons, jets and missing transverse momentum at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 04 (2015)116 [arXiv:1501.03555] [INSPIRE].
  30. [30]
    ATLAS collaboration, Search for squarks and gluinos in events with an isolated lepton, jets and missing transverse momentum at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Rev. D 96 (2017)112010 [arXiv:1708.08232] [INSPIRE].
  31. [31]
    ATLAS collaboration, Search for new phenomena using the invariant mass distribution of same-flavour opposite-sign dilepton pairs in events with missing transverse momentum in \( \sqrt{s}=13 \) TeV pp collisions with the ATLAS detector, Eur. Phys. J. C 78 (2018) 625 [arXiv:1805.11381] [INSPIRE].
  32. [32]
    CMS collaboration, Search for new physics in events with two soft oppositely charged leptons and missing transverse momentum in proton-proton collisions at \( \sqrt{s}=13 \) TeV, Phys. Lett. B 782 (2018) 440 [arXiv:1801.01846] [INSPIRE].
  33. [33]
    P. Minkowski, μeγ at a rate of one out of 109 muon decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].
  34. [34]
    T. Yanagida, Horizontal gauge symmetry and masses of neutrinos, Conf. Proc. C 7902131 (1979) 95 [INSPIRE].
  35. [35]
    O. Sawada and A. Sugamoto eds., Proceedings: workshop on the unified theories and the baryon number in the universe, Natl. Lab. High Energy Phys., Tsukuba, Japan (1979) [INSPIRE].
  36. [36]
    M. Lévy, J.L. Basdevant, D. Speiser, J. Weyers, R. Gastmans and M. Jacob eds., Quarks and leptons. Proceedings, summer institute, Cargèse, France, 929 July 1979, NATO Sci. Ser. B 61 (1980)1 [INSPIRE].
  37. [37]
    P. Van Nieuwenhuizen and D.Z. Freedman eds., Supergravity. Proceedings, workshop at Stony Brook, 2729 September 1979, North-Holland, Amsterdam, The Netherlands (1979) [INSPIRE].
  38. [38]
    R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity nonconservation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    D. Chang, R.N. Mohapatra and M.K. Parida, Decoupling parity and SU(2)R breaking scales: a new approach to left-right symmetric models, Phys. Rev. Lett. 52 (1984) 1072 [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    NNPDF collaboration, Parton distributions for the LHC run II, JHEP 04 (2015) 040 [arXiv:1410.8849] [INSPIRE].
  41. [41]
    NNPDF collaboration, Parton distributions with QED corrections, Nucl. Phys. B 877 (2013) 290 [arXiv:1308.0598] [INSPIRE].
  42. [42]
    A.D. Martin, R.G. Roberts, W.J. Stirling and R.S. Thorne, Parton distributions incorporating QED contributions, Eur. Phys. J. C 39 (2005) 155 [hep-ph/0411040] [INSPIRE].
  43. [43]
    C. Schmidt, J. Pumplin, D. Stump and C.P. Yuan, CT14QED parton distribution functions from isolated photon production in deep inelastic scattering, Phys. Rev. D 93 (2016) 114015 [arXiv:1509.02905] [INSPIRE].ADSGoogle Scholar
  44. [44]
    A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — a complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].
  45. [45]
    N.D. Christensen and C. Duhr, FeynRules — Feynman rules made easy, Comput. Phys. Commun. 180 (2009) 1614 [arXiv:0806.4194] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    R.D. Ball et al., Parton distributions with LHC data, Nucl. Phys. B 867 (2013) 244 [arXiv:1207.1303] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: going beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  49. [49]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].
  50. [50]
    DELPHES 3 collaboration, DELPHES 3, a modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].
  51. [51]
    CMS collaboration, Study of vector boson scattering and search for new physics in events with two same-sign leptons and two jets, Phys. Rev. Lett. 114 (2015) 051801 [arXiv:1410.6315] [INSPIRE].
  52. [52]
    J.M. Campbell and R.K. Ellis, An update on vector boson pair production at hadron colliders, Phys. Rev. D 60 (1999) 113006 [hep-ph/9905386] [INSPIRE].
  53. [53]
    F. Campanario, V. Hankele, C. Oleari, S. Prestel and D. Zeppenfeld, QCD corrections to charged triple vector boson production with leptonic decay, Phys. Rev. D 78 (2008) 094012 [arXiv:0809.0790] [INSPIRE].ADSGoogle Scholar
  54. [54]
    M.V. Garzelli, A. Kardos, C.G. Papadopoulos and Z. Trócsányi, \( t\overline{t}{W}^{\pm } \) and \( t\overline{t}Z \) hadroproduction at NLO accuracy in QCD with parton shower and hadronization effects, JHEP 11 (2012) 056 [arXiv:1208.2665] [INSPIRE].
  55. [55]
    LHC Higgs Cross Section Working Group collaboration, Handbook of LHC Higgs cross sections: 3. Higgs properties, arXiv:1307.1347 [INSPIRE].
  56. [56]
    Y.-B. Shen, R.-Y. Zhang, W.-G. Ma, X.-Z. Li, Y. Zhang and L. Guo, NLO QCD + NLO EW corrections to WZZ productions with leptonic decays at the LHC, JHEP 10 (2015) 186 [Erratum ibid. 10 (2016) 156] [arXiv:1507.03693] [INSPIRE].
  57. [57]
    D.T. Nhung, L.D. Ninh and M.M. Weber, NLO corrections to WWZ production at the LHC, JHEP 12 (2013) 096 [arXiv:1307.7403] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    A. Bredenstein, A. Denner, S. Dittmaier and S. Pozzorini, NLO QCD corrections to \( pp\to t\overline{t}b\overline{b}+X \) at the LHC, Phys. Rev. Lett. 103 (2009) 012002 [arXiv:0905.0110] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    G. Bevilacqua and M. Worek, Constraining BSM physics at the LHC: four top final states with NLO accuracy in perturbative QCD, JHEP 07 (2012) 111 [arXiv:1206.3064] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    G. Cowan, Two developments in discovery tests: use of weighted Monte Carlo events and an improved measure of experimental sensitivity, talk given during the meeting on Progress on Statistical Issues in Searches,, SLAC, Menlo Park, CA, U.S.A. 4–6 June 2012.
  61. [61]
    N. Kumar and S.P. Martin, Vectorlike leptons at the Large Hadron Collider, Phys. Rev. D 92 (2015) 115018 [arXiv:1510.03456] [INSPIRE].
  62. [62]
    V.E. Ozcan, S. Sultansoy and G. Unel, Possible discovery channel for new charged leptons at the LHC, J. Phys. G 36 (2009) 095002 [Erratum ibid. G 37 (2010) 059801] [arXiv:0903.3177] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Sanjib Kumar Agarwalla
    • 1
    • 2
  • Kirtiman Ghosh
    • 1
    • 2
  • Nilanjana Kumar
    • 3
  • Ayon Patra
    • 4
  1. 1.Institute of Physics, Sachivalaya MargBhubaneswarIndia
  2. 2.Homi Bhabha National InstituteMumbaiIndia
  3. 3.Saha Institute of Nuclear PhysicsHBNIKolkataIndia
  4. 4.Centre for High Energy PhysicsIndian Institute of ScienceBangaloreIndia

Personalised recommendations