Advertisement

Instantons in the Hofstadter butterfly: difference equation, resurgence and quantum mirror curves

  • Zhihao DuanEmail author
  • Jie Gu
  • Yasuyuki Hatsuda
  • Tin Sulejmanpasic
Open Access
Regular Article - Theoretical Physics
  • 26 Downloads

Abstract

We study the Harper-Hofstadter Hamiltonian and its corresponding non-perturbative butterfly spectrum. The problem is algebraically solvable whenever the magnetic flux is a rational multiple of 2π. For such values of the magnetic flux, the theory allows a formulation with two Bloch or θ-angles. We treat the problem by the path integral formulation, and show that the spectrum receives instanton corrections. Instantons as well as their one loop fluctuation determinants are found explicitly and the finding is matched with the numerical band width of the butterfly spectrum. We extend the analysis to all 2-instanton sectors with different θ-angle dependence to leading order and show consistency with numerics. We further argue that the instanton-anti-instanton contributions are ambiguous and cancel the ambiguity of the perturbation series, as they should. We hint at the possibility of exact 2-instanton solutions responsible for such contributions via Picard-Lefschetz theory. We also present a powerful way to compute the perturbative fluctuations around the 1-instanton saddle as well as the instanton-anti-instanton ambiguity by using the topological string formulation.

Keywords

Nonperturbative Effects Solitons Monopoles and Instantons Topological Strings 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    P.G. Harper, Single band motion of conduction electrons in a uniform magnetic field, Proc. Phys. Soc. A 68 (1955) 874.ADSCrossRefzbMATHGoogle Scholar
  2. [2]
    D.R. Hofstadter, Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields, Phys. Rev. B 14 (1976) 2239 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    Y. Hatsuda, H. Katsura and Y. Tachikawa, Hofstadter’s butterfly in quantum geometry, New J. Phys. 18 (2016) 103023 [arXiv:1606.01894] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    A. Grassi, Y. Hatsuda and M. Mariño, Topological strings from quantum mechanics, Annales Henri Poincaré 17 (2016) 3177 [arXiv:1410.3382] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    Y. Hatsuda, Y. Sugimoto and Z. Xu, Calabi-Yau geometry and electrons on 2d lattices, Phys. Rev. D 95 (2017) 086004 [arXiv:1701.01561] [INSPIRE].ADSMathSciNetGoogle Scholar
  6. [6]
    D. Freed and J.A. Harvey, Instantons and the spectrum of Bloch electrons in a magnetic field, Phys. Rev. B 41 (1990) 11328 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    M. Wilkinson, Critical properties of electron eigenstates in incommensurate systems, Proc. Roy. Soc. Lond. A 391 (1984) 305.ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    T. Sulejmanpasic and M. Ünsal, Aspects of perturbation theory in quantum mechanics: The BenderWu Mathematica ® package, Comput. Phys. Commun. 228 (2018) 273 [arXiv:1608.08256] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    J. Gu and T. Sulejmanpasic, High order perturbation theory for difference equations and Borel summability of quantum mirror curves, JHEP 12 (2017) 014 [arXiv:1709.00854] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    M. Bershadsky, S. Cecotti, H. Ooguri and C. Vafa, Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes, Commun. Math. Phys. 165 (1994) 311 [hep-th/9309140] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    D. Krefl and J. Walcher, Extended Holomorphic Anomaly in Gauge Theory, Lett. Math. Phys. 95 (2011) 67 [arXiv:1007.0263] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    M.-x. Huang and A. Klemm, Direct integration for general Ω backgrounds, Adv. Theor. Math. Phys. 16 (2012) 805 [arXiv:1009.1126] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    R. Couso-Santamaría, J.D. Edelstein, R. Schiappa and M. Vonk, Resurgent Transseries and the Holomorphic Anomaly, Annales Henri Poincaré 17 (2016) 331 [arXiv:1308.1695] [INSPIRE].
  14. [14]
    R. Couso-Santamaría, J.D. Edelstein, R. Schiappa and M. Vonk, Resurgent Transseries and the Holomorphic Anomaly: Nonperturbative Closed Strings in Local ℂ2, Commun. Math. Phys. 338 (2015) 285 [arXiv:1407.4821] [INSPIRE].
  15. [15]
    S. Codesido, M. Mariño and R. Schiappa, Non-Perturbative Quantum Mechanics from Non-Perturbative Strings, arXiv:1712.02603 [INSPIRE].
  16. [16]
    S. Codesido and M. Mariño, Holomorphic Anomaly and Quantum Mechanics, J. Phys. A 51 (2018) 055402 [arXiv:1612.07687] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  17. [17]
    F. Fischbach, A. Klemm and C. Nega, WKB Method and Quantum Periods beyond Genus One, arXiv:1803.11222 [INSPIRE].
  18. [18]
    Y. Hasegawa, Y. Hatsugai, M. Kohmoto and G. Montambaux, Stabilization of flux states on two-dimensional lattices, Phys. Rev. B 41 (1990) 9174.ADSCrossRefGoogle Scholar
  19. [19]
    J. Bellissard, C. Kreft and R. Seiler, Analysis of the spectrum of a particle on a triangular lattice with two magnetic fluxes by algebraic and numerical methods, J. Phys. A 24 (1991) 2329.ADSMathSciNetzbMATHGoogle Scholar
  20. [20]
    J.N. Fuchs, F. Piéchon and G. Montambaux, Landau levels, response functions and magnetic oscillations from a generalized onsager relation, SciPost Phys. 4 (2018) 24.ADSCrossRefGoogle Scholar
  21. [21]
    E. Witten, A New Look At The Path Integral Of Quantum Mechanics, arXiv:1009.6032 [INSPIRE].
  22. [22]
    E. Witten, Analytic Continuation Of Chern-Simons Theory, AMS/IP Stud. Adv. Math. 50 (2011) 347 [arXiv:1001.2933] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    D. Harlow, J. Maltz and E. Witten, Analytic continuation of Liouville theory, JHEP 12 (2011) 071 [arXiv:1108.4417] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    A. Behtash, T. Sulejmanpasic, T. Schäfer and M. Ünsal, Hidden topological angles and Lefschetz thimbles, Phys. Rev. Lett. 115 (2015) 041601 [arXiv:1502.06624] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    A. Behtash, E. Poppitz, T. Sulejmanpasic and M. Ünsal, The curious incident of multi-instantons and the necessity of Lefschetz thimbles, JHEP 11 (2015) 175 [arXiv:1507.04063] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    A. Behtash, G.V. Dunne, T. Schäfer, T. Sulejmanpasic and M. Ünsal, Complexified path integrals, exact saddles and supersymmetry, Phys. Rev. Lett. 116 (2016) 011601 [arXiv:1510.00978] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    A. Behtash, G.V. Dunne, T. Schäfer, T. Sulejmanpasic and M. Ünsal, Toward Picard-Lefschetz theory of path integrals, complex saddles and resurgence, arXiv:1510.03435 [INSPIRE].
  28. [28]
    C. Kozçaz, T. Sulejmanpasic, Y. Tanizaki and M. Ünsal, Cheshire Cat resurgence, Self-resurgence and Quasi-Exact Solvable Systems, Commun. Math. Phys. 364 (2018) 835 [arXiv:1609.06198] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    A. Behtash, G.V. Dunne, T. Schäfer, T. Sulejmanpasic and M. Ünsal, Critical Points at Infinity, Non-Gaussian Saddles and Bions, JHEP 06 (2018) 068 [arXiv:1803.11533] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    N. Nekrasov, Tying up instantons with anti-instantons, pp. 351–388, (2018), arXiv:1802.04202, DOI [INSPIRE].
  31. [31]
    Y. Hatsuda, Perturbative/nonperturbative aspects of Bloch electrons in a honeycomb lattice, PTEP 2018 (2018) 093A01 [arXiv:1712.04012] [INSPIRE].
  32. [32]
    E.B. Bogomolny, Calculation of instanton-anti-instanton contributions in quantum mechanics, Phys. Lett. B 91 (1980) 431 [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    J. Zinn-Justin, Multi-instanton contributions in quantum mechanics, Nucl. Phys. B 192 (1981) 125 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    J. Zinn-Justin, Quantum field theory and critical phenomena, Int. Ser. Monogr. Phys. 113 (2002) 1 [INSPIRE].Google Scholar
  35. [35]
    D. Dorigoni, An introduction to resurgence, trans-series and alien calculus, arXiv:1411.3585 [INSPIRE].
  36. [36]
    M. Mariño, R. Schiappa and M. Weiss, Nonperturbative Effects and the Large-Order Behavior of Matrix Models and Topological Strings, Commun. Num. Theor. Phys. 2 (2008) 349 [arXiv:0711.1954] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    J. Zinn-Justin and U.D. Jentschura, Multi-instantons and exact results I: Conjectures, WKB expansions and instanton interactions, Annals Phys. 313 (2004) 197 [quant-ph/0501136] [INSPIRE].
  38. [38]
    J. Zinn-Justin and U.D. Jentschura, Multi-instantons and exact results II: Specific cases, higher-order effects and numerical calculations, Annals Phys. 313 (2004) 269 [quant-ph/0501137] [INSPIRE].
  39. [39]
    M. Aganagic, R. Dijkgraaf, A. Klemm, M. Mariño and C. Vafa, Topological strings and integrable hierarchies, Commun. Math. Phys. 261 (2006) 451 [hep-th/0312085] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    M. Aganagic, M.C.N. Cheng, R. Dijkgraaf, D. Krefl and C. Vafa, Quantum Geometry of Refined Topological Strings, JHEP 11 (2012) 019 [arXiv:1105.0630] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. [41]
    J. Kallen and M. Mariño, Instanton effects and quantum spectral curves, Annales Henri Poincaré 17 (2016) 1037 [arXiv:1308.6485] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    R. Kashaev and M. Mariño, Operators from mirror curves and the quantum dilogarithm, Commun. Math. Phys. 346 (2016) 967 [arXiv:1501.01014] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  43. [43]
    X. Wang, G. Zhang and M.-x. Huang, New Exact Quantization Condition for Toric Calabi-Yau Geometries, Phys. Rev. Lett. 115 (2015) 121601 [arXiv:1505.05360] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    K. Sun, X. Wang and M.-x. Huang, Exact Quantization Conditions, Toric Calabi-Yau and Nonperturbative Topological String, JHEP 01 (2017) 061 [arXiv:1606.07330] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    A. Grassi and J. Gu, BPS relations from spectral problems and blowup equations, arXiv:1609.05914 [INSPIRE].
  46. [46]
    A. Grassi and M. Mariño, The complex side of the TS/ST correspondence, arXiv:1708.08642 [INSPIRE].
  47. [47]
    M. Mariño and S. Zakany, Wavefunctions, integrability and open strings, arXiv:1706.07402 [INSPIRE].
  48. [48]
    M. Mariño and S. Zakany, Exact eigenfunctions and the open topological string, J. Phys. A 50 (2017) 325401 [arXiv:1606.05297] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  49. [49]
    S. Zakany, Quantized mirror curves and resummed WKB, arXiv:1711.01099 [INSPIRE].
  50. [50]
    A.-K. Kashani-Poor, Quantization condition from exact WKB for difference equations, JHEP 06 (2016) 180 [arXiv:1604.01690] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  51. [51]
    A. Sciarappa, Bethe/Gauge correspondence in odd dimension: modular double, non-perturbative corrections and open topological strings, JHEP 10 (2016) 014 [arXiv:1606.01000] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    M. Mariño and S. Zakany, Matrix models from operators and topological strings, Annales Henri Poincaré 17 (2016) 1075 [arXiv:1502.02958] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  53. [53]
    R. Kashaev, M. Mariño and S. Zakany, Matrix models from operators and topological strings, 2, Annales Henri Poincaré 17 (2016) 2741 [arXiv:1505.02243] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  54. [54]
    M. Mariño, Spectral Theory and Mirror Symmetry, Proc. Symp. Pure Math. 98 (2018) 259 [arXiv:1506.07757] [INSPIRE].MathSciNetGoogle Scholar
  55. [55]
    S. Codesido, A. Grassi and M. Mariño, Spectral Theory and Mirror Curves of Higher Genus, Annales Henri Poincaré 18 (2017) 559 [arXiv:1507.02096] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  56. [56]
    G. Bonelli, A. Grassi and A. Tanzini, Seiberg-Witten theory as a Fermi gas, Lett. Math. Phys. 107 (2017) 1 [arXiv:1603.01174] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  57. [57]
    G. Bonelli, A. Grassi and A. Tanzini, New results in \( \mathcal{N} \) = 2 theories from non-perturbative string, Annales Henri Poincaré 19 (2018) 743 [arXiv:1704.01517] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  58. [58]
    G. Bonelli, A. Grassi and A. Tanzini, Quantum curves and q-deformed Painlevé equations, arXiv:1710.11603 [INSPIRE].
  59. [59]
    A. Grassi and M. Mariño, A Solvable Deformation Of Quantum Mechanics, arXiv:1806.01407 [INSPIRE].
  60. [60]
    N.A. Nekrasov and S.L. Shatashvili, Quantization of integrable systems and four dimensional gauge theories, in XVIth International Congress On Mathematical Physics: (With DVD-ROM), pp. 265–289, World Scientific (2010).Google Scholar
  61. [61]
    G. Álvarez, C.J. Howls and H.J. Silverstone, Dispersive hyperasymptotics and the anharmonic oscillator, J. Phys. A 35 (2002) 4017.ADSMathSciNetzbMATHGoogle Scholar
  62. [62]
    G. Álvarez, Langer-Cherry derivation of the multi-instanton expansion for the symmetric double well, J. Math. Phys. 45 (2004) 3095.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  63. [63]
    G. Álvarez and C. Casares, Exponentially small corrections in the asymptotic expansion of the eigenvalues of the cubic anharmonic oscillator, J. Phys. A 33 (2000) 5171.ADSMathSciNetzbMATHGoogle Scholar
  64. [64]
    G. Álvarez and C. Casares, Uniform asymptotic and JWKB expansions for anharmonic oscillators, J. Phys. A 33 (2000) 2499.ADSMathSciNetzbMATHGoogle Scholar
  65. [65]
    G. Álvarez, C.J. Howls and H.J. Silverstone, Anharmonic oscillator discontinuity formulae up to second-exponentially-small order, J. Phys. A 35 (2002) 4003.ADSMathSciNetzbMATHGoogle Scholar
  66. [66]
    G.V. Dunne and M. Ünsal, Uniform WKB, Multi-instantons and Resurgent Trans-Series, Phys. Rev. D 89 (2014) 105009 [arXiv:1401.5202] [INSPIRE].ADSGoogle Scholar
  67. [67]
    S. Coleman, Aspects of symmetry: selected Erice lectures, Cambridge University Press (1988).Google Scholar
  68. [68]
    G.V. Dunne, Functional determinants in quantum field theory, J. Phys. A 41 (2008) 304006 [arXiv:0711.1178] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  69. [69]
    L.A. Takhtajan, Quantum Mechanics for Mathematicians, American Mathematical Society (2008).Google Scholar
  70. [70]
    M. Mariño, Instantons and Large N, Cambridge University Press (2015).Google Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Laboratoire de Physique Théorique & Institut de Physique Théorique Philippe Meyer, École Normale Supérieure, CNRS, PSL Research University, Sorbonne Universités, UPMCParis Cedex 05France
  2. 2.Department of PhysicsRikkyo UniversityTokyoJapan
  3. 3.Institute for Nuclear PhysicsUniversity of MainzMainzGermany

Personalised recommendations