Advertisement

Resummation at finite conformal spin

  • Carlos Cardona
  • Sunny Guha
  • Surya Kiran Kanumilli
  • Kallol SenEmail author
Open Access
Regular Article - Theoretical Physics
  • 44 Downloads

Abstract

We generalize the computation of anomalous dimension and correction to OPE coefficients at finite conformal spin considered recently in [1, 2] to arbitrary space-time dimensions. By using the inversion formula of Caron-Huot and the integral (Mellin) representation of conformal blocks, we show that the contribution from individual exchanges to anomalous dimensions and corrections to the OPE coefficients for “double-twist” operators \( {\left[{\mathcal{O}}_1{\mathcal{O}}_2\right]}_{\Delta, J} \) in s-channel can be written at finite conformal spin in terms of generalized Wilson polynomials. This approach is democratic with respect to space-time dimensions, thus generalizing the earlier findings to cases where closed form expressions of the conformal blocks are not available.

Keywords

Conformal Field Theory Field Theories in Higher Dimensions 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    C. Cardona and K. Sen, Anomalous dimensions at finite conformal spin from OPE inversion, JHEP 11 (2018) 052 [arXiv:1806.10919] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  2. [2]
    J. Liu, E. Perlmutter, V. Rosenhaus and D. Simmons-Duffin, d-dimensional SYK, AdS loops and 6j symbols, arXiv:1808.00612 [INSPIRE].
  3. [3]
    R. Rattazzi, V.S. Rychkov, E. Tonni and A. Vichi, Bounding scalar operator dimensions in 4D CFT, JHEP 12 (2008) 031 [arXiv:0807.0004] [INSPIRE].
  4. [4]
    S. El-Showk et al., Solving the 3d Ising model with the conformal bootstrap II. c-minimization and precise critical exponents, J. Stat. Phys. 157 (2014) 869 [arXiv:1403.4545] [INSPIRE].
  5. [5]
    F. Kos, D. Poland and D. Simmons-Duffin, Bootstrapping mixed correlators in the 3D Ising model, JHEP 11 (2014) 109 [arXiv:1406.4858] [INSPIRE].
  6. [6]
    S. Rychkov, EPFL lectures on conformal field theory in D ≥ 3 dimensions, Springer Briefs in Physics, Springer, Germany (2016).Google Scholar
  7. [7]
    D. Simmons-Duffin, The conformal bootstrap, in the proceedings of the Theoretical Advanced Study Institute in Elementary Particle Physics: New Frontiers in Fields and Strings (TASI 2015), June 1-26, Boulder, U.S.A. (2015), arXiv:1602.07982 [INSPIRE].
  8. [8]
    D. Poland, S. Rychkov and A. Vichi, The conformal bootstrap: theory, numerical techniques and applications, arXiv:1805.04405 [INSPIRE].
  9. [9]
    Z. Komargodski and A. Zhiboedov, Convexity and liberation at large spin, JHEP 11 (2013) 140 [arXiv:1212.4103] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    A.L. Fitzpatrick, J. Kaplan, D. Poland and D. Simmons-Duffin, The analytic bootstrap and AdS superhorizon locality, JHEP 12 (2013) 004 [arXiv:1212.3616] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    D. Simmons-Duffin, The lightcone bootstrap and the spectrum of the 3d Ising CFT, JHEP 03 (2017) 086 [arXiv:1612.08471] [INSPIRE].
  12. [12]
    L.F. Alday, A. Bissi and T. Lukowski, Large spin systematics in CFT, JHEP 11 (2015) 101 [arXiv:1502.07707] [INSPIRE].ADSzbMATHGoogle Scholar
  13. [13]
    L.F. Alday and A. Zhiboedov, Conformal bootstrap with slightly broken higher spin symmetry, JHEP 06 (2016) 091 [arXiv:1506.04659] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    L.F. Alday and A. Zhiboedov, An algebraic approach to the analytic bootstrap, JHEP 04 (2017)157 [arXiv:1510.08091] [INSPIRE].
  15. [15]
    A. Kaviraj, K. Sen and A. Sinha, Analytic bootstrap at large spin, JHEP 11 (2015) 083 [arXiv:1502.01437] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    A. Kaviraj, K. Sen and A. Sinha, Universal anomalous dimensions at large spin and large twist, JHEP 07 (2015) 026 [arXiv:1504.00772] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    S. Caron-Huot, Analyticity in spin in conformal theories, JHEP 09 (2017) 078 [arXiv:1703.00278] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    D. Simmons-Duffin, D. Stanford and E. Witten, A spacetime derivation of the Lorentzian OPE inversion formula, JHEP 07 (2018) 085 [arXiv:1711.03816] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    C. Cardona, OPE inversion in Mellin space, arXiv:1803.05086 [INSPIRE].
  20. [20]
    L.F. Alday, Large spin perturbation theory for conformal field theories, Phys. Rev. Lett. 119 (2017) 111601 [arXiv:1611.01500] [INSPIRE].
  21. [21]
    L.F. Alday, A. Bissi and E. Perlmutter, Holographic reconstruction of AdS exchanges from crossing symmetry, JHEP 08 (2017) 147 [arXiv:1705.02318] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    O. Aharony, L.F. Alday, A. Bissi and R. Yacoby, The analytic bootstrap for large N Chern-Simons vector models, JHEP 08 (2018) 166 [arXiv:1805.04377] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  23. [23]
    L.F. Alday, A. Bissi and E. Perlmutter, Genus-one string amplitudes from conformal field theory, arXiv:1809.10670 [INSPIRE].
  24. [24]
    C. Sleight and M. Taronna, Spinning Mellin bootstrap: conformal partial waves, crossing kernels and applications, Fortsch. Phys. 66 (2018) 1800038 [arXiv:1804.09334] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  25. [25]
    M.S. Costa, V. Goncalves and J. Penedones, Conformal Regge theory, JHEP 12 (2012) 091 [arXiv:1209.4355] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    M. Hogervorst and B.C. van Rees, Crossing symmetry in alpha space, JHEP 11 (2017) 193 [arXiv:1702.08471] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    I. Heemskerk, J. Penedones, J. Polchinski and J. Sully, Holography from conformal field theory, JHEP 10 (2009) 079 [arXiv:0907.0151] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    F.A. Dolan and H. Osborn, Conformal four point functions and the operator product expansion, Nucl. Phys. B 599 (2001) 459 [hep-th/0011040] [INSPIRE].
  29. [29]
    F.A. Dolan and H. Osborn, Conformal partial waves: further mathematical results, arXiv:1108.6194 [INSPIRE].
  30. [30]
    W. Groenevelt, The Wilson function transform, math/0306424.
  31. [31]
    R. Gopakumar and A. Sinha, On the Polyakov-Mellin bootstrap, JHEP 12 (2018) 040 [arXiv:1809.10975] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    K. Sen and Y. Tachikawa, First-order conformal perturbation theory by marginal operators, arXiv:1711.05947 [INSPIRE].
  33. [33]
    D. Carmi, L. Di Pietro and S. Komatsu, A study of quantum field theories in AdS at finite coupling, arXiv:1810.04185 [INSPIRE].
  34. [34]
    G. Mack, D-independent representation of conformal field theories in D dimensions via transformation to auxiliary dual resonance models. Scalar amplitudes, arXiv:0907.2407 [INSPIRE].
  35. [35]
    L.U. Ancarani and G. Gasaneo, Derivatives of any order of the hypergeometric function p f q (a 1 , · · · , a p; b 1 , · · · , b q; z) with respect to the parameters a i and b i, J. Phys. A 42 (2009) 395208.Google Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Carlos Cardona
    • 1
  • Sunny Guha
    • 2
  • Surya Kiran Kanumilli
    • 1
  • Kallol Sen
    • 3
    Email author
  1. 1.Niels Bohr International Academy and Discovery CenterUniversity of CopenhagenCopenhagen ØDenmark
  2. 2.George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and AstronomyTexas A&M UniversityCollege StationU.S.A.
  3. 3.Kavli Institute for the Physics and Mathematics of the Universe (WPI)University of TokyoKashiwaJapan

Personalised recommendations