Advertisement

Deformations of the circular Wilson loop and spectral (in)dependence

  • Michael Cooke
  • Amit Dekel
  • Nadav DrukkerEmail author
  • Diego Trancanelli
  • Edoardo Vescovi
Open Access
Regular Article - Theoretical Physics
  • 17 Downloads

Abstract

In this paper we study the expectation value of deformations of the circular Wilson loop in \( \mathcal{N}=4 \) super Yang-Mills theory. The leading order deformation, known as the Bremsstrahlung function, can be obtained exactly from supersymmetric localization, so our focus is on deformations at higher orders. We find simple expressions for the expectation values for generic deformations at the quartic order at one-loop at weak coupling and at leading order at strong coupling. We also present a very simple algorithm (not requiring integration) to evaluate the two-loop result. We find that an exact symmetry of the strong coupling sigma-model, known as the spectral-parameter independence, is an approximate symmetry at weak coupling, modifying the expectation value starting only at the sextic order in the deformation. Furthermore, we find very simple patterns for how the spectral parameter can appear in the weak coupling calculation, suggesting all-order structures.

Keywords

Wilson, ’t Hooft and Polyakov loops AdS-CFT Correspondence Conformal and W Symmetry Integrable Field Theories 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J.K. Erickson, G.W. Semenoff and K. Zarembo, Wilson loops in \( \mathcal{N}=4 \) supersymmetric Yang-Mills theory, Nucl. Phys. B 582 (2000) 155 [hep-th/0003055] [INSPIRE].
  2. [2]
    N. Drukker and D.J. Gross, An exact prediction of \( \mathcal{N}=4 \) SUSYM theory for string theory, J. Math. Phys. 42 (2001) 2896 [hep-th/0010274] [INSPIRE].
  3. [3]
    V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    R. Ishizeki, M. Kruczenski and S. Ziama, Notes on euclidean Wilson loops and Riemann theta functions, Phys. Rev. D 85 (2012) 106004 [arXiv:1104.3567] [INSPIRE].
  5. [5]
    G.W. Semenoff and D. Young, Wavy Wilson line and AdS/CFT, Int. J. Mod. Phys. A 20 (2005) 2833 [hep-th/0405288] [INSPIRE].
  6. [6]
    D. Correa, J. Henn, J. Maldacena and A. Sever, An exact formula for the radiation of a moving quark in \( \mathcal{N}=4 \) super Yang Mills, JHEP 06 (2012) 048 [arXiv:1202.4455] [INSPIRE].
  7. [7]
    B. Fiol, B. Garolera and A. Lewkowycz, Exact results for static and radiative fields of a quark in \( \mathcal{N}=4 \) super Yang-Mills, JHEP 05 (2012) 093 [arXiv:1202.5292] [INSPIRE].
  8. [8]
    M. Cooke, A. Dekel and N. Drukker, The Wilson loop CFT: Insertion dimensions and structure constants from wavy lines, J. Phys. A 50 (2017) 335401 [arXiv:1703.03812] [INSPIRE].
  9. [9]
    S. Giombi, R. Roiban and A.A. Tseytlin, Half-BPS Wilson loop and AdS 2 /CFT 1, Nucl. Phys. B 922 (2017) 499 [arXiv:1706.00756] [INSPIRE].
  10. [10]
    M. Kim and N. Kiryu, Structure constants of operators on the Wilson loop from integrability, JHEP 11 (2017) 116 [arXiv:1706.02989] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    M. Kim, N. Kiryu, S. Komatsu and T. Nishimura, Structure Constants of Defect Changing Operators on the 1/2 BPS Wilson Loop, JHEP 12 (2017) 055 [arXiv:1710.07325] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    K. Pohlmeyer, Integrable hamiltonian systems and interactions through quadratic constraints, Commun. Math. Phys. 46 (1976) 207 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    A. Dekel, Wilson loops and minimal surfaces beyond the wavy approximation, JHEP 03 (2015) 085 [arXiv:1501.04202] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    T. Klose, F. Loebbert and H. Münkler, Master symmetry for holographic Wilson loops, Phys. Rev. D 94 (2016) 066006 [arXiv:1606.04104] [INSPIRE].
  15. [15]
    T. Klose, F. Loebbert and H. Münkler, Nonlocal symmetries, spectral parameter and minimal surfaces in AdS/CFT, Nucl. Phys. B 916 (2017) 320 [arXiv:1610.01161] [INSPIRE].
  16. [16]
    A. Bassetto, L. Griguolo, F. Pucci and D. Seminara, Supersymmetric Wilson loops at two loops, JHEP 06 (2008) 083 [arXiv:0804.3973] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    M. Kruczenski, Wilson loops and minimal area surfaces in hyperbolic space, JHEP 11 (2014) 065 [arXiv:1406.4945] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    Y. He and M. Kruczenski, Minimal area surfaces in AdS 3 through integrability, J. Phys. A 50 (2017) 495401 [arXiv:1705.10037] [INSPIRE].
  19. [19]
    C. Huang, Y. He and M. Kruczenski, Minimal area surfaces dual to Wilson loops and the Mathieu equation, JHEP 08 (2016) 088 [arXiv:1604.00078] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    N. Drukker and S. Kawamoto, Small deformations of supersymmetric Wilson loops and open spin-chains, JHEP 07 (2006) 024 [hep-th/0604124] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    N. Drukker, Integrable Wilson loops, JHEP 10 (2013) 135 [arXiv:1203.1617] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    D. Correa, J. Maldacena and A. Sever, The quark anti-quark potential and the cusp anomalous dimension from a TBA equation, JHEP 08 (2012) 134 [arXiv:1203.1913] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    N. Gromov and A. Sever, Analytic solution of Bremsstrahlung TBA, JHEP 11 (2012) 075 [arXiv:1207.5489] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    N. Gromov and F. Levkovich-Maslyuk, Quantum spectral curve for a cusped Wilson line in \( \mathcal{N}=4 \) SYM, JHEP 04 (2016) 134 [arXiv:1510.02098] [INSPIRE].
  25. [25]
    P. Liendo and C. Meneghelli, Bootstrap equations for \( \mathcal{N}=4 \) SYM with defects, JHEP 01 (2017) 122 [arXiv:1608.05126] [INSPIRE].
  26. [26]
    A. Cavaglià, N. Gromov and F. Levkovich-Maslyuk, Quantum spectral curve and structure constants in \( \mathcal{N}=4 \) SYM: cusps in the ladder limit, JHEP 10 (2018) 060 [arXiv:1802.04237] [INSPIRE].
  27. [27]
    S. Giombi and S. Komatsu, Exact correlators on the Wilson loop in \( \mathcal{N}=4 \) SYM: Localization, defect CFT, and integrability, JHEP 05 (2018) 109 [Erratum ibid. 11 (2018) 123] [arXiv:1802.05201] [INSPIRE].
  28. [28]
    P. Liendo, C. Meneghelli and V. Mitev, Bootstrapping the half-BPS line defect, JHEP 10 (2018) 077 [arXiv:1806.01862] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  29. [29]
    S. Giombi and S. Komatsu, More exact results in the Wilson loop defect CFT: bulk-defect OPE, nonplanar corrections and quantum spectral curve, arXiv:1811.02369 [INSPIRE].
  30. [30]
    J.C. Toledo, Smooth Wilson loops from the continuum limit of null polygons, arXiv:1410.5896 [INSPIRE].
  31. [31]
    Y. He, C. Huang and M. Kruczenski, Minimal area surfaces in AdS n+1 and Wilson loops, JHEP 02 (2018) 027 [arXiv:1712.06269] [INSPIRE].
  32. [32]
    N. Drukker, J. Plefka and D. Young, Wilson loops in 3-dimensional \( \mathcal{N}=6 \) supersymmetric Chern-Simons Theory and their string theory duals, JHEP 11 (2008) 019 [arXiv:0809.2787] [INSPIRE].
  33. [33]
    B. Chen and J.-B. Wu, Supersymmetric Wilson loops in \( \mathcal{N}=6 \) super Chern-Simons-matter theory, Nucl. Phys. B 825 (2010) 38 [arXiv:0809.2863] [INSPIRE].
  34. [34]
    S.-J. Rey, T. Suyama and S. Yamaguchi, Wilson loops in superconformal Chern-Simons theory and fundamental strings in anti-de Sitter supergravity dual, JHEP 03 (2009) 127 [arXiv:0809.3786] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    N. Drukker and D. Trancanelli, A supermatrix model for \( \mathcal{N}=6 \) super Chern-Simons-matter theory, JHEP 02 (2010) 058 [arXiv:0912.3006] [INSPIRE].
  36. [36]
    S.-x. Chu, D. Hou and H.-c. Ren, The subleading term of the strong coupling expansion of the eeavy-quark potential in a \( \mathcal{N}=4 \) super Yang-Mills vacuum, JHEP 08 (2009) 004 [arXiv:0905.1874] [INSPIRE].
  37. [37]
    V. Forini, Quark-antiquark potential in AdS at one loop, JHEP 11 (2010) 079 [arXiv:1009.3939] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  38. [38]
    N. Drukker and V. Forini, Generalized quark-antiquark potential at weak and strong coupling, JHEP 06 (2011) 131 [arXiv:1105.5144] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  39. [39]
    N. Drukker, D.J. Gross and A.A. Tseytlin, Green-Schwarz string in AdS 5 × S 5 : Semiclassical partition function, JHEP 04 (2000) 021 [hep-th/0001204] [INSPIRE].
  40. [40]
    V. Forini, V. Giangreco M. Puletti, L. Griguolo, D. Seminara and E. Vescovi, Precision calculation of 1/4-BPS Wilson loops in AdS 5 × S 5, JHEP 02 (2016) 105 [arXiv:1512.00841] [INSPIRE].
  41. [41]
    A. Faraggi, L.A. Pando Zayas, G.A. Silva and D. Trancanelli, Toward precision holography with supersymmetric Wilson loops, JHEP 04 (2016) 053 [arXiv:1601.04708] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  42. [42]
    V. Forini, A.A. Tseytlin and E. Vescovi, Perturbative computation of string one-loop corrections to Wilson loop minimal surfaces in AdS 5 × S 5, JHEP 03 (2017) 003 [arXiv:1702.02164] [INSPIRE].
  43. [43]
    A. Cagnazzo, D. Medina-Rincon and K. Zarembo, String corrections to circular Wilson loop and anomalies, JHEP 02 (2018) 120 [arXiv:1712.07730] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    D. Medina-Rincon, A.A. Tseytlin and K. Zarembo, Precision matching of circular Wilson loops and strings in AdS 5 × S 5, JHEP 05 (2018) 199 [arXiv:1804.08925] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of MathematicsKing’s College LondonLondonUnited Kingdom
  2. 2.Nordita, KTH Royal Institute of Technology and Stockholm UniversityStockholmSweden
  3. 3.Institute of PhysicsUniversity of São PauloSão PauloBrazil
  4. 4.The Blackett LaboratoryImperial CollegeLondonUnited Kingdom

Personalised recommendations