Limits from BBN on light electromagnetic decays

  • Lindsay Forestell
  • David E. MorrisseyEmail author
  • Graham White
Open Access
Regular Article - Theoretical Physics


Injection of electromagnetic energy — photons, electrons, or positrons — into the plasma of the early universe can destroy light elements created by primordial Big Bang Nucleosynthesis (BBN). The success of BBN at predicting primordial abundances has thus been used to impose stringent constraints on decay or annihilation processes with primary energies near or above the electroweak scale. In this work we investigate the constraints from BBN on electromagnetic decays that inject lower energies, between 1–100 MeV. We compute the electromagnetic cascade from such injections and we show that it can deviate significantly from the universal spectrum commonly used in BBN calculations. For electron injection below 100 MeV, we find that the final state radiation of photons can have a significant impact on the resulting spectrum relevant for BBN. We also apply our results on electromagnetic cascades to investigate the limits from BBN on light electromagnetic decays prior to recombination, and we compare them to other bounds on such decays.


Beyond Standard Model Cosmology of Theories beyond the SM 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    S. Sarkar, Big bang nucleosynthesis and physics beyond the standard model, Rept. Prog. Phys. 59 (1996) 1493 [hep-ph/9602260] [INSPIRE].
  2. [2]
    F. Iocco et al., Primordial nucleosynthesis: from precision cosmology to fundamental physics, Phys. Rept. 472 (2009) 1 [arXiv:0809.0631] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    K. Jedamzik and M. Pospelov, Big Bang nucleosynthesis and particle dark matter, New J. Phys. 11 (2009) 105028 [arXiv:0906.2087] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    M. Pospelov and J. Pradler, Big Bang nucleosynthesis as a probe of new physics, Ann. Rev. Nucl. Part. Sci. 60 (2010) 539 [arXiv:1011.1054].ADSCrossRefGoogle Scholar
  5. [5]
    D.N. Schramm and R.V. Wagoner, Element production in the early universe, Ann. Rev. Nucl. Part. Sci. 27 (1977) 37.ADSCrossRefGoogle Scholar
  6. [6]
    J. Bernstein, L.S. Brown and G. Feinberg, Cosmological Helium production simplified, Rev. Mod. Phys. 61 (1989) 25 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    T.P. Walker et al., Primordial nucleosynthesis redux, Astrophys. J. 376 (1991) 51 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    R.H. Cyburt, B.D. Fields, K.A. Olive and T.-H. Yeh, Big Bang nucleosynthesis: 2015, Rev. Mod. Phys. 88 (2016) 015004 [arXiv:1505.01076] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    M. Asplund et al., Lithium isotopic abundances in metal-poor halo stars, Astrophys. J. 644 (2006) 229 [astro-ph/0510636] [INSPIRE].
  10. [10]
    L. Sbordone et al., The metal-poor end of the Spite plateau. 1: stellar parameters, metallicities and lithium abundances, Astron. Astrophys. 522 (2010) A26 [arXiv:1003.4510] [INSPIRE].
  11. [11]
    R.H. Cyburt, B.D. Fields and K.A. Olive, An update on the big bang nucleosynthesis prediction for Li-7: the problem worsens, JCAP 11 (2008) 012 [arXiv:0808.2818] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    B.D. Fields, The primordial lithium problem, Ann. Rev. Nucl. Part. Sci. 61 (2011) 47 [arXiv:1203.3551] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    M. Kawasaki, K. Kohri and N. Sugiyama, Cosmological constraints on late time entropy production, Phys. Rev. Lett. 82 (1999) 4168 [astro-ph/9811437] [INSPIRE].
  14. [14]
    M. Kawasaki, K. Kohri and N. Sugiyama, MeV scale reheating temperature and thermalization of neutrino background, Phys. Rev. D 62 (2000) 023506 [astro-ph/0002127] [INSPIRE].
  15. [15]
    S. Hannestad, What is the lowest possible reheating temperature?, Phys. Rev. D 70 (2004) 043506 [astro-ph/0403291] [INSPIRE].
  16. [16]
    Planck collaboration, N. Aghanim et al., Planck 2018 results. VI. Cosmological parameters, arXiv:1807.06209 [INSPIRE].
  17. [17]
    J.R. Ellis, D.V. Nanopoulos and S. Sarkar, The cosmology of decaying gravitinos, Nucl. Phys. B 259 (1985) 175 [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    R. Juszkiewicz, J. Silk and A. Stebbins, Constraints on cosmologically regenerated gravitinos, Phys. Lett. B 158 (1985) 463.ADSCrossRefGoogle Scholar
  19. [19]
    S. Dimopoulos, R. Esmailzadeh, L.J. Hall and G.D. Starkman, Is the universe closed by baryons? Nucleosynthesis with a late decaying massive particle, Astrophys. J. 330 (1988) 545 [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    M.H. Reno and D. Seckel, Primordial nucleosynthesis: the effects of injecting hadrons, Phys. Rev. D 37 (1988) 3441 [INSPIRE].ADSGoogle Scholar
  21. [21]
    S. Dimopoulos, R. Esmailzadeh, L.J. Hall and G.D. Starkman, Limits on late decaying particles from nucleosynthesis, Nucl. Phys. B 311 (1989) 699 [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    J.R. Ellis et al., Astrophysical constraints on massive unstable neutral relic particles, Nucl. Phys. B 373 (1992) 399 [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    T. Moroi, H. Murayama and M. Yamaguchi, Cosmological constraints on the light stable gravitino, Phys. Lett. B 303 (1993) 289 [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    M. Kawasaki and T. Moroi, Gravitino production in the inflationary universe and the effects on big bang nucleosynthesis, Prog. Theor. Phys. 93 (1995) 879 [hep-ph/9403364] [INSPIRE].
  25. [25]
    R.H. Cyburt, J.R. Ellis, B.D. Fields and K.A. Olive, Updated nucleosynthesis constraints on unstable relic particles, Phys. Rev. D 67 (2003) 103521 [astro-ph/0211258] [INSPIRE].
  26. [26]
    K. Jedamzik, Did something decay, evaporate, or annihilate during Big Bang nucleosynthesis?, Phys. Rev. D 70 (2004) 063524 [astro-ph/0402344] [INSPIRE].
  27. [27]
    M. Kawasaki, K. Kohri and T. Moroi, Big-Bang nucleosynthesis and hadronic decay of long-lived massive particles, Phys. Rev. D 71 (2005) 083502 [astro-ph/0408426] [INSPIRE].
  28. [28]
    K. Jedamzik, Big bang nucleosynthesis constraints on hadronically and electromagnetically decaying relic neutral particles, Phys. Rev. D 74 (2006) 103509 [hep-ph/0604251] [INSPIRE].
  29. [29]
    M. Kawasaki, K. Kohri, T. Moroi and A. Yotsuyanagi, Big-Bang nucleosynthesis and gravitino, Phys. Rev. D 78 (2008) 065011 [arXiv:0804.3745] [INSPIRE].ADSGoogle Scholar
  30. [30]
    M. Kawasaki, K. Kohri, T. Moroi and Y. Takaesu, Revisiting Big-Bang nucleosynthesis constraints on long-lived decaying particles, Phys. Rev. D 97 (2018) 023502 [arXiv:1709.01211] [INSPIRE].ADSGoogle Scholar
  31. [31]
    J.A. Frieman, E.W. Kolb and M.S. Turner, Eternal annihilations: new constraints on longlived particles from Big Bang nucleosynthesis, Phys. Rev. D 41 (1990) 3080 [INSPIRE].ADSGoogle Scholar
  32. [32]
    J. Hisano, M. Kawasaki, K. Kohri and K. Nakayama, Positron/gamma-ray signatures of dark matter annihilation and Big-Bang nucleosynthesis, Phys. Rev. D 79 (2009) 063514 [Erratum ibid. D 80 (2009) 029907] [arXiv:0810.1892] [INSPIRE].
  33. [33]
    J. Hisano et al., Cosmic rays from dark matter annihilation and Big-Bang nucleosynthesis, Phys. Rev. D 79 (2009) 083522 [arXiv:0901.3582] [INSPIRE].ADSGoogle Scholar
  34. [34]
    M. Kawasaki, K. Kohri, T. Moroi and Y. Takaesu, Revisiting Big-Bang nucleosynthesis constraints on dark-matter annihilation, Phys. Lett. B 751 (2015) 246 [arXiv:1509.03665] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    R.H. Cyburt, B.D. Fields, K.A. Olive and E. Skillman, New BBN limits on physics beyond the standard model from 4 He, Astropart. Phys. 23 (2005) 313 [astro-ph/0408033] [INSPIRE].
  36. [36]
    C.M. Ho and R.J. Scherrer, Limits on MeV dark matter from the effective number of neutrinos, Phys. Rev. D 87 (2013) 023505 [arXiv:1208.4347] [INSPIRE].ADSGoogle Scholar
  37. [37]
    C. Boehm, M.J. Dolan and C. McCabe, A lower bound on the mass of cold thermal dark matter from Planck, JCAP 08 (2013) 041 [arXiv:1303.6270] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    K.M. Nollett and G. Steigman, BBN and the CMB constrain light, electromagnetically coupled WIMPs, Phys. Rev. D 89 (2014) 083508 [arXiv:1312.5725] [INSPIRE].ADSGoogle Scholar
  39. [39]
    R.J. Protheroe, T. Stanev and V.S. Berezinsky, Electromagnetic cascades and cascade nucleosynthesis in the early universe, Phys. Rev. D 51 (1995) 4134 [astro-ph/9409004] [INSPIRE].
  40. [40]
    M. Kawasaki and T. Moroi, Electromagnetic cascade in the early universe and its application to the big bang nucleosynthesis, Astrophys. J. 452 (1995) 506 [astro-ph/9412055] [INSPIRE].
  41. [41]
    A. Fradette, M. Pospelov, J. Pradler and A. Ritz, Cosmological constraints on very dark photons, Phys. Rev. D 90 (2014) 035022 [arXiv:1407.0993] [INSPIRE].ADSGoogle Scholar
  42. [42]
    J. Berger, K. Jedamzik and D.G.E. Walker, Cosmological constraints on decoupled dark photons and dark Higgs, JCAP 11 (2016) 032 [arXiv:1605.07195] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    A. Fradette and M. Pospelov, BBN for the LHC: constraints on lifetimes of the Higgs portal scalars, Phys. Rev. D 96 (2017) 075033 [arXiv:1706.01920] [INSPIRE].ADSGoogle Scholar
  44. [44]
    A. Soni and Y. Zhang, Hidden SU(N) glueball dark matter, Phys. Rev. D 93 (2016) 115025 [arXiv:1602.00714] [INSPIRE].ADSGoogle Scholar
  45. [45]
    L. Forestell, D.E. Morrissey and K. Sigurdson, Non-abelian dark forces and the relic densities of dark glueballs, Phys. Rev. D 95 (2017) 015032 [arXiv:1605.08048] [INSPIRE].ADSGoogle Scholar
  46. [46]
    L. Forestell, D.E. Morrissey and K. Sigurdson, Cosmological bounds on non-abelian dark forces, Phys. Rev. D 97 (2018) 075029 [arXiv:1710.06447] [INSPIRE].ADSGoogle Scholar
  47. [47]
    B. Henning and H. Murayama, Constraints on light dark matter from Big Bang nucleosynthesis, arXiv:1205.6479 [INSPIRE].
  48. [48]
    Y. Hochberg et al., SIMPs through the axion portal, arXiv:1806.10139 [INSPIRE].
  49. [49]
    S. Sarkar and A.M. Cooper-Sarkar, Cosmological and experimental constraints on the tau neutrino, Phys. Lett. B 148 (1984) 347.ADSCrossRefGoogle Scholar
  50. [50]
    H. Ishida, M. Kusakabe and H. Okada, Effects of long-lived 10 MeV-scale sterile neutrinos on primordial elemental abundances and the effective neutrino number, Phys. Rev. D 90 (2014) 083519 [arXiv:1403.5995] [INSPIRE].ADSGoogle Scholar
  51. [51]
    V. Poulin and P.D. Serpico, Loophole to the Universal Photon Spectrum in Electromagnetic Cascades and Application to the Cosmological Lithium Problem, Phys. Rev. Lett. 114 (2015) 091101 [arXiv:1502.01250] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    V. Poulin and P.D. Serpico, Nonuniversal BBN bounds on electromagnetically decaying particles, Phys. Rev. D 91 (2015) 103007 [arXiv:1503.04852] [INSPIRE].ADSGoogle Scholar
  53. [53]
    G.R. Blumenthal and R.J. Gould, Bremsstrahlung, synchrotron radiation and compton scattering of high-energy electrons traversing dilute gases, Rev. Mod. Phys. 42 (1970) 237 [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    A. Birkedal, K.T. Matchev, M. Perelstein and A. Spray, Robust γ ray signature of WIMP dark matter, hep-ph/0507194 [INSPIRE].
  55. [55]
    J. Mardon, Y. Nomura, D. Stolarski and J. Thaler, Dark matter signals from cascade annihilations, JCAP 05 (2009) 016 [arXiv:0901.2926] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    R. Evans, The atomic nucleus, Krieger publishing company, U.S.A. (2003).zbMATHGoogle Scholar
  57. [57]
    A.N. Gorbunov and A.T. Varfolomeev, Cross sections of the reactions 3 He (γ, p) D2 and 3 He (γ, n) 2p, Phys. Lett. 11 (1964) 137.ADSCrossRefGoogle Scholar
  58. [58]
    R. Pfeiffer, Der Kernphotoeffekt am 3 H, Z. Phys. 208 (1968) 129.ADSCrossRefGoogle Scholar
  59. [59]
    D.D. Faul, B.L. Berman, P. Meyer and D.L. Olson, Photodisintegration of 3 H, Phys. Rev. Lett. 44 (1980) 129 [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    Yu.M. Arkatov et al., Photodisintegration of He-4 nucleus down to threshold of meson production, Ukr. Fiz. Zh.(Russ. Ed.) 23 (1978) 1818.Google Scholar
  61. [61]
    J. D. Irish et al., Photoneutron Angular Distributions for 4 He, Can. J. Phys. 53 (1975) 802.ADSCrossRefGoogle Scholar
  62. [62]
    C.K. Malcom, D.V. Webb, Y.M. Shin and D.M. Skopik, Evidence of a 2 + state from the 4 He (γ, n) 3 He reaction, Phys. Lett. B 47 (1973) 433.ADSCrossRefGoogle Scholar
  63. [63]
    O. Pisanti et al., PArthENoPE: public algorithm evaluating the nucleosynthesis of primordial elements, Comput. Phys. Commun. 178 (2008) 956 [arXiv:0705.0290] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    R. Consiglio et al., PArthENoPE reloaded, Comput. Phys. Commun. 233 (2018) 237 [arXiv:1712.04378] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    E. Aver, K.A. Olive and E.D. Skillman, The effects of He I λ10830 on helium abundance determinations, JCAP 07 (2015) 011 [arXiv:1503.08146] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    R.J. Cooke, M. Pettini and C.C. Steidel, One percent determination of the primordial deuterium abundance, Astrophys. J. 855 (2018) 102 [arXiv:1710.11129] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    J. Geiss and G. Gloeckler, Isotopic composition of H, He and Ne in the protosolar cloud, Space Sci. Rev. 106 (2003) 3.ADSCrossRefGoogle Scholar
  68. [68]
    A. Peimbert, M. Peimbert and V. Luridiana, The primordial helium abundance and the number of neutrino families, Rev. Mex. Astron. Astrofis. 52 (2016) 419 [arXiv:1608.02062] [INSPIRE].ADSGoogle Scholar
  69. [69]
    Y.I. Izotov, T.X. Thuan and N.G. Guseva, A new determination of the primordial He abundance using the HeI λ10830 Å emission line: cosmological implications, Mon. Not. Roy. Astron. Soc. 445 (2014) 778 [arXiv:1408.6953] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    L.E. Marcucci, G. Mangano, A. Kievsky and M. Viviani, Implication of the proton-deuteron radiative capture for Big Bang nucleosynthesis, Phys. Rev. Lett. 116 (2016) 102501 [Erratum ibid. 117 (2016) 049901] [arXiv:1510.07877] [INSPIRE].
  71. [71]
    J.A. Adams, S. Sarkar and D.W. Sciama, CMB anisotropy in the decaying neutrino cosmology, Mon. Not. Roy. Astron. Soc. 301 (1998) 210 [astro-ph/9805108] [INSPIRE].
  72. [72]
    X.-L. Chen and M. Kamionkowski, Particle decays during the cosmic dark ages, Phys. Rev. D 70 (2004) 043502 [astro-ph/0310473] [INSPIRE].
  73. [73]
    N. Padmanabhan and D.P. Finkbeiner, Detecting dark matter annihilation with CMB polarization: Signatures and experimental prospects, Phys. Rev. D 72 (2005) 023508 [astro-ph/0503486] [INSPIRE].
  74. [74]
    L. Zhang et al., Constraints on radiative dark-matter decay from the cosmic microwave background, Phys. Rev. D 76 (2007) 061301 [arXiv:0704.2444] [INSPIRE].ADSGoogle Scholar
  75. [75]
    T.R. Slatyer, N. Padmanabhan and D.P. Finkbeiner, CMB constraints on WIMP annihilation: energy absorption during the recombination epoch, Phys. Rev. D 80 (2009) 043526 [arXiv:0906.1197] [INSPIRE].ADSGoogle Scholar
  76. [76]
    J.M. Cline and P. Scott, Dark matter CMB constraints and likelihoods for poor particle physicists, JCAP 03 (2013) 044 [Erratum ibid. 05 (2013) E01] [arXiv:1301.5908] [INSPIRE].
  77. [77]
    J.L. Feng, A. Rajaraman and F. Takayama, SuperWIMP dark matter signals from the early universe, Phys. Rev. D 68 (2003) 063504 [hep-ph/0306024] [INSPIRE].
  78. [78]
    M. Kaplinghat and M.S. Turner, Precision cosmology and the density of baryons in the universe, Phys. Rev. Lett. 86 (2001) 385 [astro-ph/0007454] [INSPIRE].
  79. [79]
    W. Hu and J. Silk, Thermalization and spectral distortions of the cosmic background radiation, Phys. Rev. D 48 (1993) 485 [INSPIRE].ADSGoogle Scholar
  80. [80]
    W. Hu and J. Silk, Thermalization constraints and spectral distortions for massive unstable relic particles, Phys. Rev. Lett. 70 (1993) 2661 [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    D.J. Fixsen et al., The Cosmic Microwave Background spectrum from the full COBE FIRAS data set, Astrophys. J. 473 (1996) 576 [astro-ph/9605054] [INSPIRE].
  82. [82]
    J. Chluba and R.A. Sunyaev, The evolution of CMB spectral distortions in the early Universe, Mon. Not. Roy. Astron. Soc. 419 (2012) 1294 [arXiv:1109.6552].ADSCrossRefGoogle Scholar
  83. [83]
    A. Kogut et al., The Primordial Inflation Explorer (PIXIE): a nulling polarimeter for Cosmic Microwave Background observations, JCAP 07 (2011) 025 [arXiv:1105.2044] [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    M. Kusakabe, A.B. Balantekin, T. Kajino and Y. Pehlivan, Big-bang nucleosynthesis limit on the neutral fermion decays into neutrinos, Phys. Rev. D 87 (2013) 085045 [arXiv:1303.2291] [INSPIRE].ADSGoogle Scholar
  85. [85]
    M. Hufnagel, K. Schmidt-Hoberg and S. Wild, BBN constraints on MeV-scale dark sectors. Part II. Electromagnetic decays, JCAP 11 (2018) 032 [arXiv:1808.09324] [INSPIRE].
  86. [86]
    F.A. Aharonian, A.M. Atoian and A.M. Nagapetian, Photoproduction of electron-positron pairs in compact X-ray sources, Astrofizika 19 (1983) 323.ADSGoogle Scholar
  87. [87]
    F.C. Jones, Calculated spectrum of inverse-Compton-scattered photons, Phys. Rev. 167 (1968) 1159 [INSPIRE].ADSCrossRefGoogle Scholar
  88. [88]
    R. Svensson and A.A. Zdziarski, Photon-photon scattering of gamma rays at cosmological distances, Astrophys. J. 349 (1990) 415 [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Lindsay Forestell
    • 1
    • 2
  • David E. Morrissey
    • 2
    Email author
  • Graham White
    • 2
  1. 1.Department of Physics and AstronomyUniversity of British ColumbiaVancouverCanada
  2. 2.TRIUMF, 4004 Wesbrook MallVancouverCanada

Personalised recommendations