Advertisement

Initial correlations of the Glasma energy-momentum tensor

  • Javier L. Albacete
  • Pablo Guerrero-RodríguezEmail author
  • Cyrille Marquet
Open Access
Regular Article - Theoretical Physics
  • 15 Downloads

Abstract

We present an analytical calculation of the covariance of the energy-momentum tensor associated to the gluon field produced in ultra-relativistic heavy ion collisions at early times, the Glasma. This object involves the two-point and single-point correlators of the energy-momentum tensor (〈Tμν (x)Tσρ(y)〉 and 〈Tμν (x)〉, respectively) at proper time τ = 0+. Our approach is based on the Color Glass Condensate effective theory, which allows us to map the fluctuations of the valence color sources in the colliding nuclei to those of the energy-momentum tensor of the produced gluon fields via the solution of the classical equations of motion in the presence of external currents. The color sources in the two colliding nuclei are characterized by Gaussian correlations, albeit in more generality than in the McLerran-Venugopalan model, allowing for non-trivial impact parameter and transverse dependence of the two-point correlator. We compare our results to those obtained under the Glasma Graph approximation, finding agreement in the limit of short transverse separations. However, important differences arise at larger transverse separations, where our result displays a slower fall-off than the Glasma Graph result (1/r2 vs. 1/r4 power-law decay), indicating that the color screening of the correlations in the transverse plane occurs at distances larger than 1/Qs by a logarithmic factor sensitive to the infrared. In the Glasma flux tube picture, this implies that the color domains are larger than originally estimated.

Keywords

Heavy Ion Phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    M. Luzum and H. Petersen, Initial State Fluctuations and Final State Correlations in Relativistic Heavy-Ion Collisions, J. Phys. G 41 (2014) 063102 [arXiv:1312.5503] [INSPIRE].
  2. [2]
    U. Heinz and R. Snellings, Collective flow and viscosity in relativistic heavy-ion collisions, Ann. Rev. Nucl. Part. Sci. 63 (2013) 123 [arXiv:1301.2826] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    J.L. Albacete and C. Marquet, Gluon saturation and initial conditions for relativistic heavy ion collisions, Prog. Part. Nucl. Phys. 76 (2014) 1 [arXiv:1401.4866] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    H. Weigert, Evolution at small x bj : The Color glass condensate, Prog. Part. Nucl. Phys. 55 (2005) 461 [hep-ph/0501087] [INSPIRE].
  5. [5]
    F. Gelis, E. Iancu, J. Jalilian-Marian and R. Venugopalan, The Color Glass Condensate, Ann. Rev. Nucl. Part. Sci. 60 (2010) 463 [arXiv:1002.0333] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    J. Jalilian-Marian, A. Kovner, A. Leonidov and H. Weigert, The Wilson renormalization group for low x physics: Towards the high density regime, Phys. Rev. D 59 (1998) 014014 [hep-ph/9706377] [INSPIRE].
  7. [7]
    J. Jalilian-Marian, A. Kovner and H. Weigert, The Wilson renormalization group for low x physics: Gluon evolution at finite parton density, Phys. Rev. D 59 (1998) 014015 [hep-ph/9709432] [INSPIRE].
  8. [8]
    A. Kovner, J.G. Milhano and H. Weigert, Relating different approaches to nonlinear QCD evolution at finite gluon density, Phys. Rev. D 62 (2000) 114005 [hep-ph/0004014] [INSPIRE].
  9. [9]
    H. Weigert, Unitarity at small Bjorken x, Nucl. Phys. A 703 (2002) 823 [hep-ph/0004044] [INSPIRE].
  10. [10]
    E. Iancu, A. Leonidov and L.D. McLerran, Nonlinear gluon evolution in the color glass condensate. 1., Nucl. Phys. A 692 (2001) 583 [hep-ph/0011241] [INSPIRE].
  11. [11]
    E. Ferreiro, E. Iancu, A. Leonidov and L. McLerran, Nonlinear gluon evolution in the color glass condensate. 2., Nucl. Phys. A 703 (2002) 489 [hep-ph/0109115] [INSPIRE].
  12. [12]
    I. Balitsky, Operator expansion for high-energy scattering, Nucl. Phys. B 463 (1996) 99 [hep-ph/9509348] [INSPIRE].
  13. [13]
    Y.V. Kovchegov, Small x F(2) structure function of a nucleus including multiple Pomeron exchanges, Phys. Rev. D 60 (1999) 034008 [hep-ph/9901281] [INSPIRE].
  14. [14]
    T. Lappi and L. McLerran, Some features of the glasma, Nucl. Phys. A 772 (2006) 200 [hep-ph/0602189] [INSPIRE].
  15. [15]
    T. Lappi, Energy density of the glasma, Phys. Lett. B 643 (2006) 11 [hep-ph/0606207] [INSPIRE].
  16. [16]
    A. Dumitru, F. Gelis, L. McLerran and R. Venugopalan, Glasma flux tubes and the near side ridge phenomenon at RHIC, Nucl. Phys. A 810 (2008) 91 [arXiv:0804.3858] [INSPIRE].
  17. [17]
    K. Fukushima and F. Gelis, The evolving Glasma, Nucl. Phys. A 874 (2012) 108 [arXiv:1106.1396] [INSPIRE].
  18. [18]
    F. Gelis, Initial state and thermalization in the Color Glass Condensate framework, Int. J. Mod. Phys. E 24 (2015) 1530008 [arXiv:1508.07974] [INSPIRE].
  19. [19]
    A. Kurkela, A. Mazeliauskas, J.-F. Paquet, S. Schlichting and D. Teaney, Matching the non-equilibrium initial stage of heavy ion collisions to hydrodynamics with QCD kinetic theory, arXiv:1805.01604 [INSPIRE].
  20. [20]
    A. Accardi et al., Electron Ion Collider: The Next QCD Frontier, Eur. Phys. J. A 52 (2016) 268 [arXiv:1212.1701] [INSPIRE].
  21. [21]
    L.D. McLerran and R. Venugopalan, Computing quark and gluon distribution functions for very large nuclei, Phys. Rev. D 49 (1994) 2233 [hep-ph/9309289] [INSPIRE].
  22. [22]
    T. Lappi and S. Schlichting, Linearly polarized gluons and axial charge fluctuations in the Glasma, Phys. Rev. D 97 (2018) 034034 [arXiv:1708.08625] [INSPIRE].
  23. [23]
    T. Lappi, S. Srednyak and R. Venugopalan, Non-perturbative computation of double inclusive gluon production in the Glasma, JHEP 01 (2010) 066 [arXiv:0911.2068] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  24. [24]
    J.-P. Blaizot, W. Broniowski and J.-Y. Ollitrault, Correlations in the Monte Carlo Glauber model, Phys. Rev. C 90 (2014) 034906 [arXiv:1405.3274] [INSPIRE].
  25. [25]
    J.-P. Blaizot, W. Broniowski and J.-Y. Ollitrault, Continuous description of fluctuating eccentricities, Phys. Lett. B 738 (2014) 166 [arXiv:1405.3572] [INSPIRE].
  26. [26]
    B. Schenke, P. Tribedy and R. Venugopalan, Event-by-event gluon multiplicity, energy density and eccentricities in ultrarelativistic heavy-ion collisions, Phys. Rev. C 86 (2012) 034908 [arXiv:1206.6805] [INSPIRE].
  27. [27]
    B. Schenke, P. Tribedy and R. Venugopalan, Fluctuating Glasma initial conditions and flow in heavy ion collisions, Phys. Rev. Lett. 108 (2012) 252301 [arXiv:1202.6646] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    J.E. Bernhard, J.S. Moreland, S.A. Bass, J. Liu and U. Heinz, Applying Bayesian parameter estimation to relativistic heavy-ion collisions: simultaneous characterization of the initial state and quark-gluon plasma medium, Phys. Rev. C 94 (2016) 024907 [arXiv:1605.03954] [INSPIRE].
  29. [29]
    S. Floerchinger and U.A. Wiedemann, Characterization of initial fluctuations for the hydrodynamical description of heavy ion collisions, Phys. Rev. C 88 (2013) 044906 [arXiv:1307.7611] [INSPIRE].
  30. [30]
    S. Floerchinger and U.A. Wiedemann, Mode-by-mode fluid dynamics for relativistic heavy ion collisions, Phys. Lett. B 728 (2014) 407 [arXiv:1307.3453] [INSPIRE].
  31. [31]
    A. Kovner, L.D. McLerran and H. Weigert, Gluon production at high transverse momentum in the McLerran-Venugopalan model of nuclear structure functions, Phys. Rev. D 52 (1995) 3809 [hep-ph/9505320] [INSPIRE].
  32. [32]
    G. Chen, R.J. Fries, J.I. Kapusta and Y. Li, Early Time Dynamics of Gluon Fields in High Energy Nuclear Collisions, Phys. Rev. C 92 (2015) 064912 [arXiv:1507.03524] [INSPIRE].
  33. [33]
    H. Fujii, F. Gelis and R. Venugopalan, Quark pair production in high energy pA collisions: General features, Nucl. Phys. A 780 (2006) 146 [hep-ph/0603099] [INSPIRE].
  34. [34]
    C. Marquet, Forward inclusive dijet production and azimuthal correlations in p(A) collisions, Nucl. Phys. A 796 (2007) 41 [arXiv:0708.0231] [INSPIRE].
  35. [35]
    Y.V. Kovchegov, J. Kuokkanen, K. Rummukainen and H. Weigert, Subleading-N(c) corrections in non-linear small-x evolution, Nucl. Phys. A 823 (2009) 47 [arXiv:0812.3238] [INSPIRE].
  36. [36]
    C. Marquet and H. Weigert, New observables to test the Color Glass Condensate beyond the large-N c limit, Nucl. Phys. A 843 (2010) 68 [arXiv:1003.0813] [INSPIRE].
  37. [37]
    J.P. Blaizot, F. Gelis and R. Venugopalan, High-energy pA collisions in the color glass condensate approach. 1. Gluon production and the Cronin effect, Nucl. Phys. A 743 (2004) 13 [hep-ph/0402256] [INSPIRE].
  38. [38]
    A. Kovner, L.D. McLerran and H. Weigert, Gluon production from nonAbelian Weizsacker-Williams fields in nucleus-nucleus collisions, Phys. Rev. D 52 (1995) 6231 [hep-ph/9502289] [INSPIRE].
  39. [39]
    R.J. Fries, J.I. Kapusta and Y. Li, Near-fields and initial energy density in the color glass condensate model, nucl-th/0604054 [INSPIRE].
  40. [40]
    J. Evslin and L. Martucci, D-brane networks in flux vacua, generalized cycles and calibrations, JHEP 07 (2007) 040 [hep-th/0703129] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    F. Fillion-Gourdeau and S. Jeon, Wilson lines: Color charge densities correlators and the production of eta-prime in the CGC for pp and pA collisions, Phys. Rev. C 79 (2009) 025204 [arXiv:0808.2154] [INSPIRE].
  42. [42]
    R. Mertig, M. Böhm and A. Denner, FEYN CALC: Computer algebraic calculation of Feynman amplitudes, Comput. Phys. Commun. 64 (1991) 345 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  43. [43]
    V. Shtabovenko, R. Mertig and F. Orellana, New Developments in FeynCalc 9.0, Comput. Phys. Commun. 207 (2016) 432 [arXiv:1601.01167] [INSPIRE].
  44. [44]
    H. Fujii, K. Fukushima and Y. Hidaka, Initial energy density and gluon distribution from the Glasma in heavy-ion collisions, Phys. Rev. C 79 (2009) 024909 [arXiv:0811.0437] [INSPIRE].
  45. [45]
    A. Kovner and U.A. Wiedemann, Eikonal evolution and gluon radiation, Phys. Rev. D 64 (2001) 114002 [hep-ph/0106240] [INSPIRE].
  46. [46]
    P. Dittner, Invariant tensors in SU(3), Commun. Math. Phys. 22 (1971) 238 [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Javier L. Albacete
    • 1
  • Pablo Guerrero-Rodríguez
    • 1
    • 2
    Email author
  • Cyrille Marquet
    • 2
  1. 1.CAFPE & Dpto. de Física Teórica y del CosmosUniversidad de GranadaGranadaSpain
  2. 2.Centre de Physique Théorique, École Polytechnique, CNRSUniversité Paris-SaclayPalaiseauFrance

Personalised recommendations