Advertisement

The top-quark window on compositeness at future lepton colliders

  • Gauthier DurieuxEmail author
  • Oleksii Matsedonskyi
Open Access
Regular Article - Theoretical Physics
  • 15 Downloads

Abstract

In composite Higgs (CH) models, large mixings between the top quark and the new strongly interacting sector are required to generate its sizeable Yukawa coupling. Precise measurements involving top as well as left-handed bottom quarks therefore offer an interesting opportunity to probe such new physics scenarios. We study the impact of third-generation-quark pair production at future lepton colliders, translating prospective effective-field-theory sensitivities into the CH parameter space. Our results show that one can probe a significant fraction of the natural CH parameter space through the top portal, especially at TeV centre-of-mass energies.

Keywords

Beyond Standard Model Technicolor and Composite Models Heavy Quark Physics Effective Field Theories 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    D.B. Kaplan and H. Georgi, SU(2) × U(1) Breaking by Vacuum Misalignment, Phys. Lett. B 136 (1984) 183 [INSPIRE].
  2. [2]
    G. Panico and A. Wulzer, The Composite Nambu-Goldstone Higgs, Lect. Notes Phys. 913 (2016) 1 [arXiv:1506.01961] [INSPIRE].
  3. [3]
    N. Fonseca, R. Zukanovich Funchal, A. Lessa and L. Lopez-Honorez, Dark Matter Constraints on Composite Higgs Models, JHEP 06 (2015) 154 [arXiv:1501.05957] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    M. Chala, R. Gröber and M. Spannowsky, Searches for vector-like quarks at future colliders and implications for composite Higgs models with dark matter, JHEP 03 (2018) 040 [arXiv:1801.06537] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    M. Chala, G. Nardini and I. Sobolev, Unified explanation for dark matter and electroweak baryogenesis with direct detection and gravitational wave signatures, Phys. Rev. D 94 (2016) 055006 [arXiv:1605.08663] [INSPIRE].
  6. [6]
    S. Bruggisser, F. Riva and A. Urbano, Strongly Interacting Light Dark Matter, SciPost Phys. 3 (2017) 017 [arXiv:1607.02474] [INSPIRE].
  7. [7]
    R. Balkin, G. Perez and A. Weiler, Little composite dark matter, Eur. Phys. J. C 78 (2018) 104 [arXiv:1707.09980] [INSPIRE].
  8. [8]
    R. Barbieri, D. Buttazzo, F. Sala, D.M. Straub and A. Tesi, A 125 GeV composite Higgs boson versus flavour and electroweak precision tests, JHEP 05 (2013) 069 [arXiv:1211.5085] [INSPIRE].
  9. [9]
    O. Matsedonskyi, On Flavour and Naturalness of Composite Higgs Models, JHEP 02 (2015) 154 [arXiv:1411.4638] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    J.R. Espinosa, B. Gripaios, T. Konstandin and F. Riva, Electroweak Baryogenesis in Non-minimal Composite Higgs Models, JCAP 01 (2012) 012 [arXiv:1110.2876] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    S. Bruggisser, B. Von Harling, O. Matsedonskyi and G. Servant, Electroweak Phase Transition and Baryogenesis in Composite Higgs Models, arXiv:1804.07314 [INSPIRE].
  12. [12]
    S. Bruggisser, B. Von Harling, O. Matsedonskyi and G. Servant, Baryon Asymmetry from a Composite Higgs Boson, Phys. Rev. Lett. 121 (2018) 131801 [arXiv:1803.08546] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    R. Contino, T. Kramer, M. Son and R. Sundrum, Warped/composite phenomenology simplified, JHEP 05 (2007) 074 [hep-ph/0612180] [INSPIRE].
  14. [14]
    B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-Six Terms in the Standard Model Lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  15. [15]
    D. Barducci, S. De Curtis, S. Moretti and G.M. Pruna, Top pair production at a future e + e machine in a composite Higgs scenario, JHEP 08 (2015) 127 [arXiv:1504.05407] [INSPIRE].
  16. [16]
    G.F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The Strongly-Interacting Light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [INSPIRE].
  17. [17]
    K. Agashe, R. Contino, L. Da Rold and A. Pomarol, A Custodial symmetry for Zbb, Phys. Lett. B 641 (2006) 62 [hep-ph/0605341] [INSPIRE].
  18. [18]
    F. del Aguila, M. Pérez-Victoria and J. Santiago, Effective description of quark mixing, Phys. Lett. B 492 (2000) 98 [hep-ph/0007160] [INSPIRE].
  19. [19]
    J.A. Aguilar-Saavedra and M. Pérez-Victoria, Top couplings and top partners, J. Phys. Conf. Ser. 452 (2013) 012037 [arXiv:1302.5634] [INSPIRE].
  20. [20]
    C. Grojean, O. Matsedonskyi and G. Panico, Light top partners and precision physics, JHEP 10 (2013) 160 [arXiv:1306.4655] [INSPIRE].
  21. [21]
    D. Liu, A. Pomarol, R. Rattazzi and F. Riva, Patterns of Strong Coupling for LHC Searches, JHEP 11 (2016) 141 [arXiv:1603.03064] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    M. Chala, G. Durieux, C. Grojean, L. de Lima and O. Matsedonskyi, Minimally extended SILH, JHEP 06 (2017) 088 [arXiv:1703.10624] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  23. [23]
    A. De Simone, O. Matsedonskyi, R. Rattazzi and A. Wulzer, A First Top Partner Hunter’s Guide, JHEP 04 (2013) 004 [arXiv:1211.5663] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    CLICdp and CLIC collaborations, M.J. Boland et al., Updated baseline for a staged Compact Linear Collider, arXiv:1608.07537 [INSPIRE].
  25. [25]
    A. Robson, CLIC detector status and plans, in proceedings of the International Workshop on Future Linear Colliders (LCWS 2018), University of Texas, Arlington, Texas, U.S.A., 22-26 October 2018 and online at https://agenda.linearcollider.org/event/7889/contributions/42465/.
  26. [26]
    A. Robson and P. Roloff, Updated CLIC luminosity staging baseline and Higgs coupling prospects, arXiv:1812.01644 [INSPIRE].
  27. [27]
    T. Barklow et al., ILC Operating Scenarios, arXiv:1506.07830 [INSPIRE].
  28. [28]
    M. Benedikt and F. Zimmerman, Future Circular Collider Study: Status and Plans, in proceedings of the FCC Week, Amsterdam, The Netherlands, 9-13 April 2018 and online at https://indico.cern.ch/event/656491/contributions/2932205/.
  29. [29]
    G. Durieux, M. Perelló, M. Vos and C. Zhang, Global and optimal probes for the top-quark effective field theory at future lepton colliders, JHEP 10 (2018) 168 [arXiv:1807.02121] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    G. Durieux, Precision constraints on the top-quark effective field theory at future lepton colliders, in proceedings of the 25th International Workshop on Deep Inelastic Scattering and Related Topics (DIS 2017), Birmingham, U.K., 3-7 April 2017, PoS(DIS2017)088 (2018) [arXiv:1708.09849] [INSPIRE].
  31. [31]
    D. Atwood and A. Soni, Analysis for magnetic moment and electric dipole moment form-factors of the top quark via \( {e}^{+}{e}^{-}\to t\overline{t} \), Phys. Rev. D 45 (1992) 2405 [INSPIRE].
  32. [32]
    M. Diehl and O. Nachtmann, Optimal observables for the measurement of three gauge boson couplings in e + e W + W , Z. Phys. C 62 (1994) 397 [INSPIRE].
  33. [33]
    CLICdp collaboration, H. Abramowicz et al., Top-Quark Physics at the CLIC Electron-Positron Linear Collider, CLICdp-Pub-2018-003 [arXiv:1807.02441] [INSPIRE].
  34. [34]
    J.A. Aguilar-Saavedra et al., Interpreting top-quark LHC measurements in the standard-model effective field theory, arXiv:1802.07237 [INSPIRE].
  35. [35]
    C. Grojean, A. Wulzer, T. You and Z. Zhang, to appear.Google Scholar
  36. [36]
    G. Durieux, C. Grojean, J. Gu and K. Wang, The leptonic future of the Higgs, JHEP 09 (2017) 014 [arXiv:1704.02333] [INSPIRE].
  37. [37]
    S. Di Vita et al., A global view on the Higgs self-coupling at lepton colliders, JHEP 02 (2018) 178 [arXiv:1711.03978] [INSPIRE].
  38. [38]
    S. Bilokin, R. Pöschl and F. Richard, Measurement of b quark EW couplings at ILC, arXiv:1709.04289 [INSPIRE].
  39. [39]
    O. Matsedonskyi, G. Panico and A. Wulzer, Light Top Partners for a Light Composite Higgs, JHEP 01 (2013) 164 [arXiv:1204.6333] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    G. Panico, M. Redi, A. Tesi and A. Wulzer, On the Tuning and the Mass of the Composite Higgs, JHEP 03 (2013) 051 [arXiv:1210.7114] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    C. Csáki, M. Geller and O. Telem, Tree-level Quartic for a Holographic Composite Higgs, JHEP 05 (2018) 134 [arXiv:1710.08921] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    B. Batell, M.A. Fedderke and L.-T. Wang, Relaxation of the Composite Higgs Little Hierarchy, JHEP 12 (2017) 139 [arXiv:1705.09666] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    M.A. Amin, J. Fan, K.D. Lozanov and M. Reece, Higgscitement: Cosmological Dynamics of Fine Tuning, arXiv:1802.00444 [INSPIRE].
  44. [44]
    J. Gu, H. Li, Z. Liu, S. Su and W. Su, Learning from Higgs Physics at Future Higgs Factories, JHEP 12 (2017) 153 [arXiv:1709.06103] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.DESYHamburgGermany

Personalised recommendations