Advertisement

Dark matter bound states via emission of scalar mediators

  • Ruben OncalaEmail author
  • Kalliopi Petraki
Open Access
Regular Article - Theoretical Physics
  • 16 Downloads

Abstract

If dark matter (DM) couples to a force carrier that is much lighter than itself, then it may form bound states in the early universe and inside haloes. While bound-state formation via vector emission is known to be efficient and have a variety of phenomenological implications, the capture via scalar emission typically requires larger couplings and is relevant to more limited parameter space, due to cancellations in the radiative amplitude. However, this result takes into account only the trilinear DM-DM-mediator coupling. Theories with scalar mediators include also a scalar potential, whose couplings may participate in the radiative transitions. We compute the contributions of these couplings to the radiative capture, and determine the parameter space in which they are important.

Keywords

Beyond Standard Model Nonperturbative Effects Cosmology of Theories beyond the SM 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    S. Tulin and H.-B. Yu, Dark Matter Self-interactions and Small Scale Structure, Phys. Rept. 730 (2018) 1 [arXiv:1705.02358] [INSPIRE].
  2. [2]
    A. Sommerfeld, Über die Beugung und Bremsung der Elektronen, Annalen Phys. 403 (1931) 257.ADSCrossRefzbMATHGoogle Scholar
  3. [3]
    A.D. Sakharov, Interaction of an Electron and Positron in Pair Production, Zh. Eksp. Teor. Fiz. 18 (1948) 631 [INSPIRE].Google Scholar
  4. [4]
    J. Harz and K. Petraki, Higgs Enhancement for the Dark Matter Relic Density, Phys. Rev. D 97 (2018) 075041 [arXiv:1711.03552] [INSPIRE].
  5. [5]
    B. von Harling and K. Petraki, Bound-state formation for thermal relic dark matter and unitarity, JCAP 12 (2014) 033 [arXiv:1407.7874] [INSPIRE].CrossRefGoogle Scholar
  6. [6]
    M. Pospelov and A. Ritz, Astrophysical Signatures of Secluded Dark Matter, Phys. Lett. B 671 (2009) 391 [arXiv:0810.1502] [INSPIRE].
  7. [7]
    H. An, M.B. Wise and Y. Zhang, Effects of Bound States on Dark Matter Annihilation, Phys. Rev. D 93 (2016) 115020 [arXiv:1604.01776] [INSPIRE].ADSGoogle Scholar
  8. [8]
    P. Asadi, M. Baumgart, P.J. Fitzpatrick, E. Krupczak and T.R. Slatyer, Capture and Decay of Electroweak WIMPonium, JCAP 02 (2017) 005 [arXiv:1610.07617] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    K. Petraki, M. Postma and J. de Vries, Radiative bound-state-formation cross-sections for dark matter interacting via a Yukawa potential, JHEP 04 (2017) 077 [arXiv:1611.01394] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  10. [10]
    M. Cirelli, P. Panci, K. Petraki, F. Sala and M. Taoso, Dark Matter’s secret liaisons: phenomenology of a dark U(1) sector with bound states, JCAP 05 (2017) 036 [arXiv:1612.07295] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    C. Kouvaris, K. Langæble and N.G. Nielsen, The Spectrum of Darkonium in the Sun, JCAP 10 (2016) 012 [arXiv:1607.00374] [INSPIRE].
  12. [12]
    I. Baldes and K. Petraki, Asymmetric thermal-relic dark matter: Sommerfeld-enhanced freeze-out, annihilation signals and unitarity bounds, JCAP 09 (2017) 028 [arXiv:1703.00478] [INSPIRE].ADSGoogle Scholar
  13. [13]
    I. Baldes, M. Cirelli, P. Panci, K. Petraki, F. Sala and M. Taoso, Asymmetric dark matter: residual annihilations and self-interactions, SciPost Phys. 4 (2018) 041 [arXiv:1712.07489] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    J.D. March-Russell and S.M. West, WIMPonium and Boost Factors for Indirect Dark Matter Detection, Phys. Lett. B 676 (2009) 133 [arXiv:0812.0559] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    H. An, M.B. Wise and Y. Zhang, Strong CMB Constraint On P-Wave Annihilating Dark Matter, Phys. Lett. B 773 (2017) 121 [arXiv:1606.02305] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    K. Petraki, L. Pearce and A. Kusenko, Self-interacting asymmetric dark matter coupled to a light massive dark photon, JCAP 07 (2014) 039 [arXiv:1403.1077] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    L. Pearce, K. Petraki and A. Kusenko, Signals from dark atom formation in halos, Phys. Rev. D 91 (2015) 083532 [arXiv:1502.01755] [INSPIRE].ADSGoogle Scholar
  18. [18]
    J.M. Cline, Y. Farzan, Z. Liu, G.D. Moore and W. Xue, 3.5 keV x rays as the “21 cm line” of dark atoms and a link to light sterile neutrinos, Phys. Rev. D 89 (2014) 121302 [arXiv:1404.3729] [INSPIRE].
  19. [19]
    L. Pearce and A. Kusenko, Indirect Detection of Self-Interacting Asymmetric Dark Matter, Phys. Rev. D 87 (2013) 123531 [arXiv:1303.7294] [INSPIRE].ADSGoogle Scholar
  20. [20]
    W. Detmold, M. McCullough and A. Pochinsky, Dark Nuclei I: Cosmology and Indirect Detection, Phys. Rev. D 90 (2014) 115013 [arXiv:1406.2276] [INSPIRE].ADSGoogle Scholar
  21. [21]
    R. Laha and E. Braaten, Direct detection of dark matter in universal bound states, Phys. Rev. D 89 (2014) 103510 [arXiv:1311.6386] [INSPIRE].ADSGoogle Scholar
  22. [22]
    A. Butcher, R. Kirk, J. Monroe and S.M. West, Can Tonne-Scale Direct Detection Experiments Discover Nuclear Dark Matter?, JCAP 10 (2017) 035 [arXiv:1610.01840] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    G. Krnjaic and K. Sigurdson, Big Bang Darkleosynthesis, Phys. Lett. B 751 (2015) 464 [arXiv:1406.1171] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    M.B. Wise and Y. Zhang, Stable Bound States of Asymmetric Dark Matter, Phys. Rev. D 90 (2014) 055030 [Erratum ibid. D 91 (2015) 039907] [arXiv:1407.4121] [INSPIRE].
  25. [25]
    M.B. Wise and Y. Zhang, Yukawa Bound States of a Large Number of Fermions, JHEP 02 (2015) 023 [Erratum ibid. 10 (2015) 165] [arXiv:1411.1772] [INSPIRE].
  26. [26]
    S.R. Coleman, Q Balls, Nucl. Phys. B 262 (1985) 263 [Erratum ibid. B 269 (1986) 744] [INSPIRE].
  27. [27]
    A. Kusenko, Small Q balls, Phys. Lett. B 404 (1997) 285 [hep-th/9704073] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    A. Kusenko, Solitons in the supersymmetric extensions of the standard model, Phys. Lett. B 405 (1997) 108 [hep-ph/9704273] [INSPIRE].
  29. [29]
    A. Kusenko and M.E. Shaposhnikov, Supersymmetric Q balls as dark matter, Phys. Lett. B 418 (1998) 46 [hep-ph/9709492] [INSPIRE].
  30. [30]
    W. Shepherd, T.M.P. Tait and G. Zaharijas, Bound states of weakly interacting dark matter, Phys. Rev. D 79 (2009) 055022 [arXiv:0901.2125] [INSPIRE].ADSGoogle Scholar
  31. [31]
    K. Petraki, M. Postma and M. Wiechers, Dark-matter bound states from Feynman diagrams, JHEP 06 (2015) 128 [arXiv:1505.00109] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    S. Kim and M. Laine, On thermal corrections to near-threshold annihilation, JCAP 01 (2017) 013 [arXiv:1609.00474] [INSPIRE].
  33. [33]
    S. Kim and M. Laine, Rapid thermal co-annihilation through bound states in QCD, JHEP 07 (2016) 143 [arXiv:1602.08105] [INSPIRE].
  34. [34]
    J. Harz and K. Petraki, Radiative bound-state formation in unbroken perturbative non-Abelian theories and implications for dark matter, JHEP 07 (2018) 096 [arXiv:1805.01200] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    M. Geller, S. Iwamoto, G. Lee, Y. Shadmi and O. Telem, Dark quarkonium formation in the early universe, JHEP 06 (2018) 135 [arXiv:1802.07720] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    S. Biondini and M. Laine, Thermal dark matter co-annihilating with a strongly interacting scalar, JHEP 04 (2018) 072 [arXiv:1801.05821] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  37. [37]
    S. Biondini and M. Laine, Re-derived overclosure bound for the inert doublet model, JHEP 08 (2017) 047 [arXiv:1706.01894] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    D.E. Kaplan, G.Z. Krnjaic, K.R. Rehermann and C.M. Wells, Atomic Dark Matter, JCAP 05 (2010) 021 [arXiv:0909.0753] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    F.-Y. Cyr-Racine and K. Sigurdson, Cosmology of atomic dark matter, Phys. Rev. D 87 (2013) 103515 [arXiv:1209.5752] [INSPIRE].
  40. [40]
    S.J. Lonsdale and R.R. Volkas, Grand unified hidden-sector dark matter, Phys. Rev. D 90 (2014) 083501 [Erratum ibid. D 91 (2015) 129906] [arXiv:1407.4192] [INSPIRE].
  41. [41]
    K.K. Boddy, J.L. Feng, M. Kaplinghat and T.M.P. Tait, Self-Interacting Dark Matter from a Non-Abelian Hidden Sector, Phys. Rev. D 89 (2014) 115017 [arXiv:1402.3629] [INSPIRE].ADSGoogle Scholar
  42. [42]
    G.D. Kribs and E.T. Neil, Review of strongly-coupled composite dark matter models and lattice simulations, Int. J. Mod. Phys. A 31 (2016) 1643004 [arXiv:1604.04627] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  43. [43]
    S.J. Lonsdale, M. Schroor and R.R. Volkas, Asymmetric Dark Matter and the hadronic spectra of hidden QCD, Phys. Rev. D 96 (2017) 055027 [arXiv:1704.05213] [INSPIRE].ADSGoogle Scholar
  44. [44]
    S.J. Lonsdale and R.R. Volkas, Comprehensive asymmetric dark matter model, Phys. Rev. D 97 (2018) 103510 [arXiv:1801.05561] [INSPIRE].
  45. [45]
    M.I. Gresham, H.K. Lou and K.M. Zurek, Early Universe synthesis of asymmetric dark matter nuggets, Phys. Rev. D 97 (2018) 036003 [arXiv:1707.02316] [INSPIRE].ADSGoogle Scholar
  46. [46]
    E. Braaten, D. Kang and R. Laha, Production of dark-matter bound states in the early universe by three-body recombination, JHEP 11 (2018) 084 [arXiv:1806.00609] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    C. Itzykson and J. Zuber, Quantum field theory, Dover Publications, (1980).Google Scholar
  48. [48]
    A. Pineda and J. Soto, Effective field theory for ultrasoft momenta in NRQCD and NRQED, Nucl. Phys. Proc. Suppl. 64 (1998) 428 [hep-ph/9707481] [INSPIRE].
  49. [49]
    N. Brambilla, A. Pineda, J. Soto and A. Vairo, Potential NRQCD: An effective theory for heavy quarkonium, Nucl. Phys. B 566 (2000) 275 [hep-ph/9907240] [INSPIRE].
  50. [50]
    M. Beneke, Perturbative heavy quark - anti-quark systems, hep-ph/9911490 [INSPIRE].
  51. [51]
    A.V. Manohar and I.W. Stewart, Renormalization group analysis of the QCD quark potential to order v 2, Phys. Rev. D 62 (2000) 014033 [hep-ph/9912226] [INSPIRE].
  52. [52]
    A.V. Manohar and I.W. Stewart, Running of the heavy quark production current and 1/v potential in QCD, Phys. Rev. D 63 (2001) 054004 [hep-ph/0003107] [INSPIRE].
  53. [53]
    A. Pineda, Renormalization group improvement of the NRQCD Lagrangian and heavy quarkonium spectrum, Phys. Rev. D 65 (2002) 074007 [hep-ph/0109117] [INSPIRE].
  54. [54]
    N. Brambilla, A. Pineda, J. Soto and A. Vairo, Effective field theories for heavy quarkonium, Rev. Mod. Phys. 77 (2005) 1423 [hep-ph/0410047] [INSPIRE].
  55. [55]
    A. Pineda, Next-to-leading ultrasoft running of the heavy quarkonium potentials and spectrum: Spin-independent case, Phys. Rev. D 84 (2011) 014012 [arXiv:1101.3269] [INSPIRE].ADSGoogle Scholar
  56. [56]
    A.H. Hoang and M. Stahlhofen, Ultrasoft NLL Running of the Nonrelativistic O(v) QCD Quark Potential, JHEP 06 (2011) 088 [arXiv:1102.0269] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  57. [57]
    E. Braaten, E. Johnson and H. Zhang, Zero-range effective field theory for resonant wino dark matter. Part II. Coulomb resummation, JHEP 02 (2018) 150 [arXiv:1708.07155] [INSPIRE].
  58. [58]
    E. Braaten, E. Johnson and H. Zhang, Zero-range effective field theory for resonant wino dark matter. Part I. Framework, JHEP 11 (2017) 108 [arXiv:1706.02253] [INSPIRE].
  59. [59]
    E. Braaten, E. Johnson and H. Zhang, Zero-range effective field theory for resonant wino dark matter. Part III. Annihilation effects, JHEP 05 (2018) 062 [arXiv:1712.07142] [INSPIRE].
  60. [60]
    K.M. Belotsky, E.A. Esipova and A.A. Kirillov, On the classical description of the recombination of dark matter particles with a Coulomb-like interaction, Phys. Lett. B 761 (2016)81 [arXiv:1506.03094] [INSPIRE].
  61. [61]
    T. Bringmann, F. Kahlhoefer, K. Schmidt-Hoberg and P. Walia, Strong constraints on self-interacting dark matter with light mediators, Phys. Rev. Lett. 118 (2017) 141802 [arXiv:1612.00845] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    F. Kahlhoefer, K. Schmidt-Hoberg and S. Wild, Dark matter self-interactions from a general spin-0 mediator, JCAP 08 (2017) 003 [arXiv:1704.02149] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    N.F. Bell, Y. Cai, J.B. Dent, R.K. Leane and T.J. Weiler, Enhancing Dark Matter Annihilation Rates with Dark Bremsstrahlung, Phys. Rev. D 96 (2017) 023011 [arXiv:1705.01105] [INSPIRE].ADSGoogle Scholar
  64. [64]
    T. Binder, M. Gustafsson, A. Kamada, S.M.R. Sandner and M. Wiesner, Reannihilation of self-interacting dark matter, Phys. Rev. D 97 (2018) 123004 [arXiv:1712.01246] [INSPIRE].ADSGoogle Scholar
  65. [65]
    K. Petraki and R.R. Volkas, Review of asymmetric dark matter, Int. J. Mod. Phys. A 28 (2013) 1330028 [arXiv:1305.4939] [INSPIRE].
  66. [66]
    A. Kusenko, Phase transitions precipitated by solitosynthesis, Phys. Lett. B 406 (1997) 26 [hep-ph/9705361] [INSPIRE].
  67. [67]
    M. Postma, Solitosynthesis of Q balls, Phys. Rev. D 65 (2002) 085035 [hep-ph/0110199] [INSPIRE].
  68. [68]
    L. Pearce, Solitosynthesis induced phase transitions, Phys. Rev. D 85 (2012) 125022 [arXiv:1202.0873] [INSPIRE].ADSGoogle Scholar
  69. [69]
    M.E. Peskin and D.V. Schroeder, An Introduction to Quantum Field Theory, Westview Press, (1995).Google Scholar
  70. [70]
    L. Hulthén, Über die eigenlosunger der Schrödinger-gleichung des deuterons, Ark. Mat. Astron. Fys. 28 A (1942) 1.Google Scholar
  71. [71]
    L. Hulthén, On the Virtual State of the Deuteron, Ark. Mat. Astron. Fys. 29 B (1943) 1.Google Scholar
  72. [72]
    A.I. Akhiezer and N.P. Merenkov, The theory of lepton bound-state production, J. Phys. B 29 (1996) 2135.Google Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.NikhefAmsterdamThe Netherlands
  2. 2.Laboratoire de Physique Théorique et Hautes Energies (LPTHE), UMR 7589 CNRS & Sorbonne UniversitéParisFrance

Personalised recommendations