Advertisement

The phenomenology of electric dipole moments in models of scalar leptoquarks

  • W. Dekens
  • J. de Vries
  • M. Jung
  • K. K. Vos
Open Access
Regular Article - Theoretical Physics
  • 9 Downloads

Abstract

We study the phenomenology of electric dipole moments (EDMs) induced in various scalar leptoquark models. We consider generic leptoquark couplings to quarks and leptons and match to Standard Model effective field theory. After evolving the resulting operators to low energies, we connect to EDM experiments by using up-to-date hadronic, nuclear, and atomic matrix elements. We show that current experimental limits set strong constraints on the possible CP-violating phases in leptoquark models. Depending on the quarks and leptons involved in the interaction, the existing searches for EDMs of leptons, nucleons, atoms, and molecules all play a role in constraining the CP-violating couplings. We discuss the impact of hadronic and nuclear uncertainties as well as the sensitivities that can be achieved with future EDM experiments. Finally, we study the impact of EDM constraints on a specific leptoquark model that can explain the recent B-physics anomalies.

Keywords

Beyond Standard Model CP violation Effective Field Theories Renormalization Group 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    S. Fajfer, J.F. Kamenik, I. Nisandzic and J. Zupan, Implications of lepton flavor universality violations in B decays, Phys. Rev. Lett. 109 (2012) 161801 [arXiv:1206.1872] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    D. Buttazzo, A. Greljo, G. Isidori and D. Marzocca, B-physics anomalies: a guide to combined explanations, JHEP 11 (2017) 044 [arXiv:1706.07808] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    A. Crivellin, D. Müller and T. Ota, Simultaneous explanation of R(D (∗)) and b + μ : the last scalar leptoquarks standing, JHEP 09 (2017) 040 [arXiv:1703.09226] [INSPIRE].
  4. [4]
    D. Marzocca, Addressing the B-physics anomalies in a fundamental composite Higgs model, JHEP 07 (2018) 121 [arXiv:1803.10972] [INSPIRE].
  5. [5]
    D. Bečirević et al., Scalar leptoquarks from grand unified theories to accommodate the B-physics anomalies, Phys. Rev. D 98 (2018) 055003 [arXiv:1806.05689] [INSPIRE].
  6. [6]
    I. Doršner et al., Physics of leptoquarks in precision experiments and at particle colliders, Phys. Rept. 641 (2016) 1 [arXiv:1603.04993] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    M. Pospelov and A. Ritz, CKM benchmarks for electron electric dipole moment experiments, Phys. Rev. D 89 (2014) 056006 [arXiv:1311.5537] [INSPIRE].
  8. [8]
    C.-Y. Seng, Reexamination of the standard model nucleon electric dipole moment, Phys. Rev. C 91 (2015) 025502 [arXiv:1411.1476] [INSPIRE].
  9. [9]
    T. Mannel and N. Uraltsev, Loop-less electric dipole moment of the nucleon in the standard model, Phys. Rev. D 85 (2012) 096002 [arXiv:1202.6270] [INSPIRE].
  10. [10]
    W. Dekens et al., Unraveling models of CP-violation through electric dipole moments of light nuclei, JHEP 07 (2014) 069 [arXiv:1404.6082] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    J. Engel, M.J. Ramsey-Musolf and U. van Kolck, Electric Dipole Moments of Nucleons, Nuclei and Atoms: The Standard Model and Beyond, Prog. Part. Nucl. Phys. 71 (2013) 21 [arXiv:1303.2371] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    N. Yamanaka et al., Probing exotic phenomena at the interface of nuclear and particle physics with the electric dipole moments of diamagnetic atoms: a unique window to hadronic and semi-leptonic CP-violation, Eur. Phys. J. A 53 (2017) 54 [arXiv:1703.01570] [INSPIRE].
  13. [13]
    T. Chupp, P. Fierlinger, M. Ramsey-Musolf and J. Singh, Electric dipole moments of the atoms, molecules, nuclei and particles, arXiv:1710.02504 [INSPIRE].
  14. [14]
    Belle collaboration, Search for the electric dipole moment of the τ lepton, Phys. Lett. B 551 (2003) 16 [hep-ex/0210066] [INSPIRE].
  15. [15]
    DELPHI collaboration, Study of tau-pair production in photon-photon collisions at LEP and limits on the anomalous electromagnetic moments of the τ lepton, Eur. Phys. J. C 35 (2004) 159 [hep-ex/0406010] [INSPIRE].
  16. [16]
    F.J. Botella et al., On the search for the electric dipole moment of strange and charm baryons at LHC, Eur. Phys. J. C 77 (2017) 181 [arXiv:1612.06769] [INSPIRE].
  17. [17]
    S.M. Barr and A. Masiero, Bounds on the electron electric dipole moment in a wide class of models, Phys. Rev. Lett. 58 (1987) 187 [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    C.Q. Geng, Leptonic CP-violation in leptoquark models, Z. Phys. C 48 (1990) 279 [INSPIRE].
  19. [19]
    S.M. Barr, T and P odd electron-nucleon interactions and the electric dipole moments of large atoms, Phys. Rev. D 45 (1992) 4148 [INSPIRE].
  20. [20]
    X.-G. He, B.H.J. McKellar and S. Pakvasa, CP violating electron-nucleon interactions in multi-Higgs doublet and leptoquark models, Phys. Lett. B 283 (1992) 348 [INSPIRE].
  21. [21]
    P. Herczeg, CP violating electron-nucleon interactions from leptoquark exchange, Phys. Rev. D 68 (2003) 116004 [Erratum ibid. D 69 (2004) 039901] [INSPIRE].
  22. [22]
    J.M. Arnold, B. Fornal and M.B. Wise, Phenomenology of scalar leptoquarks, Phys. Rev. D 88 (2013) 035009 [arXiv:1304.6119] [INSPIRE].
  23. [23]
    K. Fuyuto, M. Ramsey-Musolf and T. Shen, Electric dipole moments from CP-violating scalar leptoquark interactions, Phys. Lett. B 788 (2019) 52 [arXiv:1804.01137] [INSPIRE].
  24. [24]
    M.J. Ramsey-Musolf, P. Winslow and G. White, Color breaking baryogenesis, Phys. Rev. D 97 (2018) 123509 [arXiv:1708.07511] [INSPIRE].
  25. [25]
    I. Dorsner, S. Fajfer and N. Kosnik, Heavy and light scalar leptoquarks in proton decay, Phys. Rev. D 86 (2012) 015013 [arXiv:1204.0674] [INSPIRE].
  26. [26]
    ATLAS collaboration, Searches for scalar leptoquarks in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Eur. Phys. J. C 76 (2016) 5 [arXiv:1508.04735] [INSPIRE].
  27. [27]
    CMS collaboration, Search for pair production of first-generation scalar leptoquarks at \( \sqrt{s}= 13 \) TeV, Submitted to: Phys. Rev. (2018) [arXiv:1811.01197] [INSPIRE].
  28. [28]
    CMS collaboration, Search for pair production of second-generation leptoquarks at \( \sqrt{s}= 13 \) TeV, Submitted to: Phys. Rev. (2018) [arXiv:1808.05082] [INSPIRE].
  29. [29]
    CMS collaboration, Search for heavy neutrinos and third-generation leptoquarks in hadronic states of two τ leptons and two jets in proton-proton collisions at \( \sqrt{s}=13 \) TeV, submitted to JHEP, arXiv:1811.00806 [INSPIRE].
  30. [30]
    W. Buchmüller and D. Wyler, Effective Lagrangian analysis of new interactions and flavor conservation, Nucl. Phys. B 268 (1986) 621 [INSPIRE].
  31. [31]
    B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-six terms in the standard model lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  32. [32]
    S. Weinberg, Larger Higgs exchange terms in the neutron electric dipole moment, Phys. Rev. Lett. 63 (1989) 2333 [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    T. Abe, J. Hisano and R. Nagai, Model independent evaluation of the Wilson coefficient of the Weinberg operator in QCD, JHEP 03 (2018) 175 [arXiv:1712.09503] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  34. [34]
    E. Braaten, C.-S. Li and T.-C. Yuan, The evolution of Weinberg’s gluonic CP violation operator, Phys. Rev. Lett. 64 (1990) 1709 [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    E. Braaten, C.S. Li and T.C. Yuan, The gluon color-electric dipole moment and its anomalous dimension, Phys. Rev. D 42 (1990) 276 [INSPIRE].
  36. [36]
    G. Boyd, A.K. Gupta, S.P. Trivedi and M.B. Wise, Effective hamiltonian for the electric dipole moment of the neutron, Phys. Lett. B 241 (1990) 584 [INSPIRE].
  37. [37]
    W. Dekens and J. de Vries, Renormalization group running of dimension-six sources of parity and time-reversal violation, JHEP 05 (2013) 149 [arXiv:1303.3156] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    B. Grzadkowski and M. Misiak, Anomalous W tb coupling effects in the weak radiative B-meson decay, Phys. Rev. D 78 (2008) 077501 [Erratum ibid. D 84 (2011) 059903] [arXiv:0802.1413] [INSPIRE].
  39. [39]
    A.J. Buras and M. Jung, Analytic inclusion of the scale dependence of the anomalous dimension matrix in standard model effective theory, JHEP 06 (2018) 067 [arXiv:1804.05852] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    J. Hisano, K. Tsumura and M.J.S. Yang, QCD corrections to neutron electric dipole moment from dimension-six four-quark operators, Phys. Lett. B 713 (2012) 473 [arXiv:1205.2212] [INSPIRE].
  41. [41]
    H. An, X. Ji and F. Xu, P-odd and CP-odd four-quark contributions to neutron EDM, JHEP 02 (2010) 043 [arXiv:0908.2420] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  42. [42]
    R. Alonso, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of the Standard Model Dimension Six Operators III: Gauge Coupling Dependence and Phenomenology, JHEP 04 (2014) 159 [arXiv:1312.2014] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    G. Degrassi, E. Franco, S. Marchetti and L. Silvestrini, QCD corrections to the electric dipole moment of the neutron in the MSSM, JHEP 11 (2005) 044 [hep-ph/0510137] [INSPIRE].
  44. [44]
    F. Wilczek and A. Zee, ΔI = 1/2 rule and right-handed currents: heavy quark expansion and limitation on Zweig’s rule, Phys. Rev. D 15 (1977) 2660 [INSPIRE].
  45. [45]
    V. Cirigliano, W. Dekens, J. de Vries and E. Mereghetti, Is there room for CP-violation in the top-Higgs sector?, Phys. Rev. D 94 (2016) 016002 [arXiv:1603.03049] [INSPIRE].
  46. [46]
    E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group evolution of the standard model dimension six operators II: Yukawa dependence, JHEP 01 (2014) 035 [arXiv:1310.4838] [INSPIRE].
  47. [47]
    E.E. Jenkins, A.V. Manohar and P. Stoffer, Low-energy effective field theory below the electroweak scale: anomalous dimensions, JHEP 01 (2018) 084 [arXiv:1711.05270] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  48. [48]
    C. Alexandrou et al., Nucleon scalar and tensor charges using lattice QCD simulations at the physical value of the pion mass, Phys. Rev. D 95 (2017) 114514 [arXiv:1703.08788] [INSPIRE].
  49. [49]
    J. de Vries, E. Mereghetti, R.G.E. Timmermans and U. van Kolck, The effective chiral lagrangian from dimension-six parity and time-reversal violation, Annals Phys. 338 (2013) 50 [arXiv:1212.0990] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  50. [50]
    A. Manohar and H. Georgi, Chiral quarks and the nonrelativistic quark model, Nucl. Phys. B 234 (1984) 189 [INSPIRE].
  51. [51]
    W. Dekens, E.E. Jenkins, A.V. Manohar and P. Stoffer, Non-perturbative effects in μ, arXiv:1810.05675 [INSPIRE].
  52. [52]
    J. de Vries et al., Electric dipole moments of light nuclei from chiral effective field theory, Phys. Rev. C 84 (2011) 065501 [arXiv:1109.3604] [INSPIRE].
  53. [53]
    J. Bsaisou et al., Nuclear electric dipole moments in chiral effective field theory, JHEP 03 (2015) 104 [Erratum ibid. 05 (2015) 083] [arXiv:1411.5804] [INSPIRE].
  54. [54]
    M. Pospelov, Best values for the CP odd meson nucleon couplings from supersymmetry, Phys. Lett. B 530 (2002) 123 [hep-ph/0109044] [INSPIRE].
  55. [55]
    V. Cirigliano, W. Dekens, J. de Vries and E. Mereghetti, An ϵ improvement from right-handed currents, Phys. Lett. B 767 (2017) 1 [arXiv:1612.03914] [INSPIRE].
  56. [56]
    J. de Vries, E. Mereghetti, C.-Y. Seng and A. Walker-Loud, Lattice QCD spectroscopy for hadronic CP-violation, Phys. Lett. B 766 (2017) 254 [arXiv:1612.01567] [INSPIRE].
  57. [57]
    T. Bhattacharya et al., Neutron electric dipole moment and tensor charges from lattice QCD, Phys. Rev. Lett. 115 (2015) 212002 [arXiv:1506.04196] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    PNDME collaboration, Iso-vector and iso-scalar tensor charges of the nucleon from lattice QCD, Phys. Rev. D 92 (2015) 094511 [arXiv:1506.06411] [INSPIRE].
  59. [59]
    T. Bhattacharya et al., Axial, scalar and tensor charges of the nucleon from 2 + 1 + 1-flavor lattice QCD, Phys. Rev. D 94 (2016) 054508 [arXiv:1606.07049] [INSPIRE].
  60. [60]
    R. Gupta et al., Isovector charges of the nucleon from 2 + 1 + 1-flavor Lattice QCD, Phys. Rev. D 98 (2018) 034503 [arXiv:1806.09006] [INSPIRE].
  61. [61]
    R. Gupta et al., Flavor diagonal tensor charges of the nucleon from (2 + 1 + 1)-flavor lattice QCD, Phys. Rev. D 98 (2018) 091501 [arXiv:1808.07597] [INSPIRE].
  62. [62]
    M. Pospelov and A. Ritz, Neutron EDM from electric and chromoelectric dipole moments of quarks, Phys. Rev. D 63 (2001) 073015 [hep-ph/0010037] [INSPIRE].
  63. [63]
    O. Lebedev, K.A. Olive, M. Pospelov and A. Ritz, Probing CP-violation with the deuteron electric dipole moment, Phys. Rev. D 70 (2004) 016003 [hep-ph/0402023] [INSPIRE].
  64. [64]
    M. Pospelov and A. Ritz, Electric dipole moments as probes of new physics, Annals Phys. 318 (2005) 119 [hep-ph/0504231] [INSPIRE].
  65. [65]
    J. Hisano, J.Y. Lee, N. Nagata and Y. Shimizu, Reevaluation of neutron electric dipole moment with QCD sum rules, Phys. Rev. D 85 (2012) 114044 [arXiv:1204.2653] [INSPIRE].
  66. [66]
    K. Fuyuto, J. Hisano and N. Nagata, Neutron electric dipole moment induced by strangeness revisited, Phys. Rev. D 87 (2013) 054018 [arXiv:1211.5228] [INSPIRE].
  67. [67]
    D.A. Demir, M. Pospelov and A. Ritz, Hadronic EDMs, the Weinberg operator and light gluinos, Phys. Rev. D 67 (2003) 015007 [hep-ph/0208257] [INSPIRE].
  68. [68]
    M. Abramczyk et al., Lattice calculation of electric dipole moments and form factors of the nucleon, Phys. Rev. D 96 (2017) 014501 [arXiv:1701.07792] [INSPIRE].
  69. [69]
    J. Dragos, T. Luu, A. Shindler and J. de Vries, Electric dipole moment results from lattice QCD, EPJ Web Conf. 175 (2018) 06018 [arXiv:1711.04730] [INSPIRE].
  70. [70]
    B. Yoon, T. Bhattacharya and R. Gupta, Neutron electric dipole moment on the lattice, EPJ Web Conf. 175 (2018) 01014 [arXiv:1712.08557] [INSPIRE].
  71. [71]
    HERMES collaboration, Precise determination of the spin structure function g(1) of the proton, deuteron and neutron, Phys. Rev. D 75 (2007) 012007 [hep-ex/0609039] [INSPIRE].
  72. [72]
    M. Hoferichter, J. Ruiz de Elvira, B. Kubis and U.-G. Meissner, High-precision determination of the pion-nucleon σ term from Roy-Steiner equations, Phys. Rev. Lett. 115 (2015) 092301 [arXiv:1506.04142] [INSPIRE].
  73. [73]
    ETM collaboration, Direct evaluation of the quark content of nucleons from lattice QCD at the physical point, Phys. Rev. Lett. 116 (2016) 252001 [arXiv:1601.01624] [INSPIRE].
  74. [74]
    S. Borsányi et al., Ab initio calculation of the neutron-proton mass difference, Science 347 (2015) 1452 [arXiv:1406.4088] [INSPIRE].
  75. [75]
    D.A. Brantley et al., Strong isospin violation and chiral logarithms in the baryon spectrum, arXiv:1612.07733 [INSPIRE].
  76. [76]
    S. Dürr et al., Lattice computation of the nucleon scalar quark contents at the physical point, Phys. Rev. Lett. 116 (2016) 172001 [arXiv:1510.08013] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    RQCD collaboration, Direct determinations of the nucleon and pion σ terms at nearly physical quark masses, Phys. Rev. D 93 (2016) 094504 [arXiv:1603.00827] [INSPIRE].
  78. [78]
    JLQCD collaboration, Nucleon charges with dynamical overlap fermions, Phys. Rev. D 98 (2018) 054516 [arXiv:1805.10507] [INSPIRE].
  79. [79]
    V. Anastassopoulos et al., A storage ring experiment to detect a proton electric dipole moment, Rev. Sci. Instrum. 87 (2016) 115116 [arXiv:1502.04317] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    L.I. Schiff, Measurability of nuclear electric dipole moments, Phys. Rev. 132 (1963) 2194 [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    V.F. Dmitriev and R.A. Sen’kov, Schiff moment of the mercury nucleus and the proton dipole moment, Phys. Rev. Lett. 91 (2003) 212303 [nucl-th/0306050] [INSPIRE].
  82. [82]
    J.H. de Jesus and J. Engel, Time-reversal-violating Schiff moment of 199 Hg, Phys. Rev. C 72 (2005) 045503 [nucl-th/0507031] [INSPIRE].
  83. [83]
    S. Ban, J. Dobaczewski, J. Engel and A. Shukla, Fully self-consistent calculations of nuclear Schiff moments, Phys. Rev. C 82 (2010) 015501 [arXiv:1003.2598] [INSPIRE].
  84. [84]
    V.A. Dzuba, V.V. Flambaum and S.G. Porsev, Calculation of P,T-odd electric dipole moments for diamagnetic atoms 129 Xe, 171 Yb, 199 Hg, 211 Rn and 225 Ra, Phys. Rev. A 80 (2009) 032120 [arXiv:0906.5437] [INSPIRE].
  85. [85]
    Y. Singh and B.K. Sahoo, Rigorous limits for hadronic and semi-leptonic CP -violating coupling constants from the electric dipole moment of 199 Hg, Phys. Rev. A 91 (2015) 030501 [arXiv:1408.4337] [INSPIRE].
  86. [86]
    B. Sahoo, Improved limits on the hadronic and semihadronic CP violating parameters and role of a dark force carrier in the electric dipole moment of 199 Hg, Phys. Rev. D 95 (2017) 013002 [arXiv:1612.09371] [INSPIRE].
  87. [87]
    B. Sahoo and B. Das, Relativistic normal coupled-cluster theory for accurate determination of electric dipole moments of atoms: first application to the 199 Hg atom, Phys. Rev. Lett. 120 (2018) 203001 [INSPIRE].
  88. [88]
    T. Fleig and M. Jung, Model-independent determinations of the electron EDM and the role of diamagnetic atoms, JHEP 07 (2018) 012 [arXiv:1802.02171] [INSPIRE].ADSCrossRefGoogle Scholar
  89. [89]
    A.M. Mårtensson-Pendrill and P. Öster, Calculations of atomic electric dipole moments, Phys. Scripta 36 (1987) 444.Google Scholar
  90. [90]
    K.V.P. Latha, D. Angom, B.P. Das and D. Mukherjee, Probing CP-violation with the electric dipole moment of atomic mercury, Phys. Rev. Lett. 103 (2009) 083001 [Erratum ibid. 115 (2015) 059902] [arXiv:0902.4790] [INSPIRE].
  91. [91]
    L. Radziute, G. Gaigalas, P. Jönsson and J. Bieron, Electric dipole moments of superheavy elements — A case study on copernicium, Phys. Rev. A 93 (2016) 062508 [arXiv:1508.03974] [INSPIRE].
  92. [92]
    M. Jung, A robust limit for the electric dipole moment of the electron, JHEP 05 (2013) 168 [arXiv:1301.1681] [INSPIRE].ADSCrossRefGoogle Scholar
  93. [93]
    M. Jung and A. Pich, Electric dipole moments in two-Higgs-doublet models, JHEP 04 (2014) 076 [arXiv:1308.6283] [INSPIRE].ADSCrossRefGoogle Scholar
  94. [94]
    K. Yanase, N. Yoshinaga, K. Higashiyama and N. Yamanaka, Electric dipole moment of 199 Hg atom from P, CP-odd electron-nucleon interaction, arXiv:1805.00419 [INSPIRE].
  95. [95]
    A. Yoshimi et al., Nuclear spin maser with an artificial feedback mechanism, Phys. Lett. A 304 (2002) 13.Google Scholar
  96. [96]
    M.P. Ledbetter, I.M. Savukov and M.V. Romalis, Non-linear amplification of small spin precession using long range dipolar interactions, Phys. Rev. Lett. 94 (2005) 060801 [physics/0409019].
  97. [97]
    W. Heil et al., Spin clocks: probing fundamental symmetries in nature, Annalen Phys. 525 (2013) 539 [INSPIRE].ADSCrossRefGoogle Scholar
  98. [98]
    F. Kuchler, P. Fierlinger and D. Wurm, A novel approach to measure the electric dipole moment of the isotope 129 Xe, EPJ Web Conf. 66 (2014) 05011 [INSPIRE].
  99. [99]
    L.R. Hunter et al., On the prospects for laser cooling of TlF, Phys. Rev. A 85 (2012) 012511 [arXiv:1110.3748].
  100. [100]
    E.B. Norrgard et al., Hyperfine structure of the B 1Π state and predictions of optical cycling behavior in the XB transition of TlF, Phys. Rev. A 95 (2017) 062506.Google Scholar
  101. [101]
    R.H. Parker et al., First measurement of the atomic electric dipole moment of 225 Ra, Phys. Rev. Lett. 114 (2015) 233002 [arXiv:1504.07477] [INSPIRE].
  102. [102]
    M. Bishof et al., Improved limit on the 225 Ra electric dipole moment, Phys. Rev. C 94 (2016) 025501 [arXiv:1606.04931] [INSPIRE].
  103. [103]
    J. Dobaczewski, J. Engel, M. Kortelainen and P. Becker, Correlating Schiff moments in the light actinides with octupole moments, Phys. Rev. Lett. 121 (2018) 232501 [arXiv:1807.09581] [INSPIRE].
  104. [104]
    Y. Singh and B.K. Sahoo, Electric dipole moment of 225 Ra due to P- and T-violating weak interactions, Phys. Rev. A 92 (2015) 022502 [arXiv:1504.00269] [INSPIRE].
  105. [105]
    V.A. Dzuba and V.V. Flambaum, Calculation of the (T,P)-odd electric dipole moment of Thallium, Phys. Rev. A 80 (2009) 062509 [arXiv:0909.0308] [INSPIRE].
  106. [106]
    S.G. Porsev, M.S. Safronova and M.G. Kozlov, Electric dipole moment enhancement factor of thallium, Phys. Rev. Lett. 108 (2012) 173001 [arXiv:1201.5615] [INSPIRE].ADSCrossRefGoogle Scholar
  107. [107]
    M. Denis and T. Fleig, In search of discrete symmetry violations beyond the standard model: Thorium monoxide reloaded , J. Chem. Phys. 145 (2016) 214307.ADSCrossRefGoogle Scholar
  108. [108]
    L.V. Skripnikov, A.N. Petrov and A.V. Titov, Communication: Theoretical study of ThO for the electron electric dipole moment search, J. Chem. Phys. 139 (2013) 221103.ADSCrossRefGoogle Scholar
  109. [109]
    T. Fleig, \( \mathcal{P},\mathcal{T} \) -odd and magnetic hyperfine-interaction constants and excited-state lifetime for Hf F +, Phys. Rev. A 96 (2017) 040502 [arXiv:1706.02893] [INSPIRE].
  110. [110]
    L.V. Skripnikov, Combined 4-component and relativistic pseudopotential study of ThO for the electron electric dipole moment search, J. Chem. Phys. 145 (2016) 214301.ADSCrossRefGoogle Scholar
  111. [111]
    M. Abe et al., Application of relativistic coupled-cluster theory to the effective electric field in YbF, Phys. Rev. A 90 (2014) 022501.Google Scholar
  112. [112]
    A. Sunaga, M. Abe, M. Hada and B.P. Das, Relativistic coupled-cluster calculation of the electron-nucleus scalar-pseudoscalar interaction constant W s in YbF, Phys. Rev. A 93 (2016) 042507.Google Scholar
  113. [113]
    JEDI collaboration, New method for a continuous determination of the spin tune in storage rings and implications for precision experiments, Phys. Rev. Lett. 115 (2015) 094801 [arXiv:1504.00635] [INSPIRE].
  114. [114]
    N. Yamanaka and E. Hiyama, Enhancement of the CP-odd effect in the nuclear electric dipole moment of 6 Li, Phys. Rev. C 91 (2015) 054005 [arXiv:1503.04446] [INSPIRE].
  115. [115]
    Muon (g-2) collaboration, An improved limit on the muon electric dipole moment, Phys. Rev. D 80 (2009) 052008 [arXiv:0811.1207] [INSPIRE].
  116. [116]
    J.M. Pendlebury et al., Revised experimental upper limit on the electric dipole moment of the neutron, Phys. Rev. D 92 (2015) 092003 [arXiv:1509.04411] [INSPIRE].
  117. [117]
    C.A. Baker et al., An improved experimental limit on the electric dipole moment of the neutron, Phys. Rev. Lett. 97 (2006) 131801 [hep-ex/0602020] [INSPIRE].
  118. [118]
    W.C. Griffith et al., Improved limit on the permanent electric dipole moment of 199 Hg, Phys. Rev. Lett. 102 (2009) 101601 [INSPIRE].
  119. [119]
    B. Graner, Y. Chen, E.G. Lindahl and B.R. Heckel, Reduced limit on the permanent electric dipole moment of 199 Hg, Phys. Rev. Lett. 116 (2016) 161601 [Erratum ibid. 119 (2017) 119901] [arXiv:1601.04339] [INSPIRE].
  120. [120]
    B.C. Regan, E.D. Commins, C.J. Schmidt and D. DeMille, New limit on the electron electric dipole moment, Phys. Rev. Lett. 88 (2002) 071805 [INSPIRE].
  121. [121]
    J.J. Hudson et al., Improved measurement of the shape of the electron, Nature 473 (2011) 493 [INSPIRE].ADSCrossRefGoogle Scholar
  122. [122]
    D.M. Kara et al., Measurement of the electron’s electric dipole moment using YbF molecules: methods and data analysis, New J. Phys. 14 (2012) 103051 [arXiv:1208.4507] [INSPIRE].ADSCrossRefGoogle Scholar
  123. [123]
    W.B. Cairncross et al., Precision measurement of the electron’s electric dipole moment using trapped molecular ions, Phys. Rev. Lett. 119 (2017) 153001 [arXiv:1704.07928] [INSPIRE].ADSCrossRefGoogle Scholar
  124. [124]
    ACME collaboration, Order of magnitude smaller limit on the electric dipole moment of the electron, Science 343 (2014) 269 [arXiv:1310.7534] [INSPIRE].
  125. [125]
    ACME collaboration, Methods, Analysis and the Treatment of Systematic Errors for the Electron Electric Dipole Moment Search in Thorium Monoxide, New J. Phys. 19 (2017) 073029 [arXiv:1612.09318] [INSPIRE].
  126. [126]
    ACME collaboration, Improved limit on the electric dipole moment of the electron, Nature 562 (2018) 355 [INSPIRE].
  127. [127]
    Belle II collaboration, The Belle II physics book, arXiv:1808.10567 [INSPIRE].
  128. [128]
    X. Chen and Y. Wu, Search for the electric dipole moment and anomalous magnetic moment of the τ lepton at τ factories, arXiv:1803.00501 [INSPIRE].
  129. [129]
    Muon g-2 collaboration, The muon g − 2 experiment overview and status, PoS(NuFact2017)116 [arXiv:1712.05980] [INSPIRE].
  130. [130]
    A. Hocker, H. Lacker, S. Laplace and F. Le Diberder, A new approach to a global fit of the CKM matrix, Eur. Phys. J. C 21 (2001) 225 [hep-ph/0104062] [INSPIRE].
  131. [131]
    Y.T. Chien et al., Direct and indirect constraints on CP-violating Higgs-quark and Higgs-gluon interactions, JHEP 02 (2016) 011 [arXiv:1510.00725] [INSPIRE].ADSCrossRefGoogle Scholar
  132. [132]
    S. Davidson and S. Descotes-Genon, Minimal flavour violation for leptoquarks, JHEP 11 (2010) 073 [arXiv:1009.1998] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  133. [133]
    T. Fleig and M. Jung, in preparation.Google Scholar
  134. [134]
    V.A. Dzuba, V.V. Flambaum, and C. Harabati, Relations between matrix elements of different weak interactions and interpretation of the parity-nonconserving and electron electric-dipole-moment measurements in atoms and molecules, Phys. Rev. A 84 (2011) 052108 [Erratum ibid. A 85 (2012) 029901].Google Scholar
  135. [135]
    T. Chupp and M. Ramsey-Musolf, Electric dipole moments: a global analysis, Phys. Rev. C 91 (2015) 035502 [arXiv:1407.1064] [INSPIRE].
  136. [136]
    F. Feruglio, P. Paradisi and O. Sumensari, Implications of scalar and tensor explanations of \( {R}_{D^{\left(\ast \right)}} \), JHEP 11 (2018) 191 [arXiv:1806.10155] [INSPIRE].
  137. [137]
    HFLAV collaboration, Averages of b-hadron, c-hadron and τ -lepton properties as of summer 2016, Eur. Phys. J. C 77 (2017) 895 [arXiv:1612.07233] [INSPIRE].
  138. [138]
    BaBar collaboration, Evidence for an excess of \( \overline{B}\to {D}^{\left(\ast \right)}{\tau}^{-}{\overline{\nu}}_{\tau } \) decays, Phys. Rev. Lett. 109 (2012) 101802 [arXiv:1205.5442] [INSPIRE].
  139. [139]
    Belle collaboration, Measurement of the branching ratio of \( \overline{B}\to {D}^{\left(\ast \right)}{\tau}^{-}{\overline{\nu}}_{\tau } \) relative to \( \overline{B}\to {D}^{\left(\ast \right)}{\ell}^{-}{\overline{\nu}}_{\ell } \) decays with hadronic tagging at Belle, Phys. Rev. D 92 (2015) 072014 [arXiv:1507.03233] [INSPIRE].
  140. [140]
    LHCb collaboration, Test of lepton flavor universality by the measurement of the B 0D ∗− τ + ν τ branching fraction using three-prong τ decays, Phys. Rev. D 97 (2018) 072013 [arXiv:1711.02505] [INSPIRE].
  141. [141]
    BaBar collaboration, Measurement of an excess of \( \overline{B}\to {D}^{\left(\ast \right)}{\tau}^{-}{\overline{\nu}}_{\tau } \) decays and implications for charged Higgs bosons, Phys. Rev. D 88 (2013) 072012 [arXiv:1303.0571] [INSPIRE].
  142. [142]
    Belle collaboration, Measurement of the branching ratio of \( {\overline{B}}^0\to {D}^{\ast +}{\tau}^{-}{\overline{\nu}}_{\tau } \) relative to \( {\overline{B}}^0\to {D}^{\ast +}{\ell}^{-}{\overline{\nu}}_{\ell } \) decays with a semileptonic tagging method, Phys. Rev. D 94 (2016) 072007 [arXiv:1607.07923] [INSPIRE].
  143. [143]
    LHCb collaboration, Measurement of the ratio of branching fractions \( \mathrm{\mathcal{B}}\left({\overline{B}}^0\to {D}^{\ast +}{\tau}^{-}{\overline{\nu}}_{\tau}\right)/\mathrm{\mathcal{B}}\left({\overline{B}}^0\to {D}^{\ast +}{\mu}^{-}{\overline{\nu}}_{\mu}\right) \), Phys. Rev. Lett. 115 (2015) 111803 [Erratum ibid. 115 (2015) 159901] [arXiv:1506.08614] [INSPIRE].
  144. [144]
    LHCb collaboration, Measurement of the ratio of the B 0D ∗− τ + ν τ and B 0D ∗− μ + ν μ branching fractions using three-prong τ -lepton decays, Phys. Rev. Lett. 120 (2018) 171802 [arXiv:1708.08856] [INSPIRE].
  145. [145]
    Belle collaboration, Measurement of the τ lepton polarization and R(D ) in the decay \( \overline{B}\to D\ast {\tau}^{-}{\overline{\nu}}_{\tau } \) , Phys. Rev. Lett. 118 (2017) 211801 [arXiv:1612.00529] [INSPIRE].
  146. [146]
    Belle collaboration, Measurement of the τ lepton polarization and R(D ) in the decay \( \overline{B}\to D\ast {\tau}^{-}{\overline{\nu}}_{\tau } \) with one-prong hadronic τ decays at Belle, Phys. Rev. D 97 (2018) 012004 [arXiv:1709.00129] [INSPIRE].
  147. [147]
    MILC collaboration, BDℓν form factors at nonzero recoil and —V cb — from 2+1-flavor lattice QCD, Phys. Rev. D 92 (2015) 034506 [arXiv:1503.07237] [INSPIRE].
  148. [148]
    HPQCD collaboration, BDlν form factors at nonzero recoil and extraction of |V cb|, Phys. Rev. D 92 (2015) 054510 [Erratum ibid. D 93 (2016) 119906] [arXiv:1505.03925] [INSPIRE].
  149. [149]
    F.U. Bernlochner, Z. Ligeti, M. Papucci and D.J. Robinson, Combined analysis of semileptonic B decays to D and D : R(D (∗)), |V cb| and new physics, Phys. Rev. D 95 (2017) 115008 [Erratum ibid. D 97 (2018) 059902] [arXiv:1703.05330] [INSPIRE].
  150. [150]
    D. Bigi and P. Gambino, Revisiting BDℓν, Phys. Rev. D 94 (2016) 094008 [arXiv:1606.08030] [INSPIRE].
  151. [151]
    D. Bigi, P. Gambino and S. Schacht, R(D ), |V cb| and the heavy quark symmetry relations between form factors, JHEP 11 (2017) 061 [arXiv:1707.09509] [INSPIRE].
  152. [152]
    S. Jaiswal, S. Nandi and S.K. Patra, Extraction of |V cb| from BD (∗) ℓν and the standard model predictions of R(D (∗)), JHEP 12 (2017) 060 [arXiv:1707.09977] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Theoretical Division, Los Alamos National LaboratoryLos AlamosU.S.A.
  2. 2.Department of PhysicsUniversity of California at San DiegoLa JollaU.S.A.
  3. 3.Amherst Center for Fundamental Interactions, Department of PhysicsUniversity of Massachusetts AmherstAmherstU.S.A.
  4. 4.RIKEN BNL Research Center, Brookhaven National Laboratory, UptonNew YorkU.S.A.
  5. 5.Excellence Cluster Universe, Technische Universität MünchenGarchingGermany
  6. 6.Theoretische Physik 1, Universität SiegenSiegenGermany

Personalised recommendations