Advertisement

Tropical geometry and five dimensional Higgs branches at infinite coupling

  • Santiago Cabrera
  • Amihay Hanany
  • Futoshi YagiEmail author
Open Access
Regular Article - Theoretical Physics
  • 40 Downloads

Abstract

Superconformal five dimensional theories have a rich structure of phases and brane webs play a crucial role in studying their properties. This paper is devoted to the study of a three parameter family of SQCD theories, given by the number of colors Nc for an SU Nc gauge theory, number of fundamental flavors Nf, and the Chern Simons level k. The study of their infinite coupling Higgs branch is a long standing problem and reveals a rich pattern of moduli spaces, depending on the 3 values in a critical way. For a generic choice of the parameters we find a surprising number of 3 different components, with intersections that are closures of height 2 nilpotent orbits of the flavor symmetry. This is in contrast to previous studies where except for one case (Nc = 2, Nf = 2), the parameters were restricted to the cases of Higgs branches that have only one component. The new feature is achieved thanks to a concept in tropical geometry which is called stable intersection and allows for a computation of the Higgs branch to almost all the cases which were previously unknown for this three parameter family apart form certain small number of exceptional theories with low rank gauge group. A crucial feature in the construction of the Higgs branch is the notion of dressed monopole operators.

Keywords

Brane Dynamics in Gauge Theories Field Theories in Higher Dimensions Supersymmetric Gauge Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    O. Aharony and A. Hanany, Branes, superpotentials and superconformal fixed points, Nucl. Phys. B 504 (1997) 239 [hep-th/9704170] [INSPIRE].
  2. [2]
    O. Aharony, A. Hanany and B. Kol, Webs of (p,q) five-branes, five-dimensional field theories and grid diagrams, JHEP 01 (1998) 002 [hep-th/9710116] [INSPIRE].
  3. [3]
    S. Cremonesi, G. Ferlito, A. Hanany and N. Mekareeya, Instanton Operators and the Higgs Branch at Infinite Coupling, JHEP 04 (2017) 042 [arXiv:1505.06302] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    G. Ferlito, A. Hanany, N. Mekareeya and G. Zafrir, 3d Coulomb branch and 5d Higgs branch at infinite coupling, JHEP 07 (2018) 061 [arXiv:1712.06604] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    A. Hanany and E. Witten, Type IIB superstrings, BPS monopoles and three-dimensional gauge dynamics, Nucl. Phys. B 492 (1997) 152 [hep-th/9611230] [INSPIRE].
  6. [6]
    O. DeWolfe, A. Hanany, A. Iqbal and E. Katz, Five-branes, seven-branes and five-dimensional E n field theories, JHEP 03 (1999) 006 [hep-th/9902179] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  7. [7]
    F. Benini, S. Benvenuti and Y. Tachikawa, Webs of five-branes and N = 2 superconformal field theories, JHEP 09 (2009) 052 [arXiv:0906.0359] [INSPIRE].
  8. [8]
    H. Nakajima, Instantons on ale spaces, quiver varieties, and kac-moody algebras, Duke Math. J. 76 (1994) 365.Google Scholar
  9. [9]
    A. Beauville, Symplectic singularities, Invent. Math. 139 (2000) 541.Google Scholar
  10. [10]
    S. Cremonesi, A. Hanany and A. Zaffaroni, Monopole operators and Hilbert series of Coulomb branches of 3d \( \mathcal{N}=4 \) gauge theories, JHEP 01 (2014) 005 [arXiv:1309.2657] [INSPIRE].
  11. [11]
    H. Nakajima, Towards a mathematical definition of Coulomb branches of 3-dimensional \( \mathcal{N}=4 \) gauge theories, I, Adv. Theor. Math. Phys. 20 (2016) 595 [arXiv:1503.03676] [INSPIRE].
  12. [12]
    A. Braverman, M. Finkelberg and H. Nakajima, Towards a mathematical definition of Coulomb branches of 3-dimensional \( \mathcal{N}=4 \) gauge theories, II, arXiv:1601.03586 [INSPIRE].
  13. [13]
    H. Nakajima, Introduction to a provisional mathematical definition of Coulomb branches of 3-dimensional \( \mathcal{N}=4 \) gauge theories, arXiv:1706.05154 [INSPIRE].
  14. [14]
    C. Cordova, T.T. Dumitrescu and K. Intriligator, Multiplets of Superconformal Symmetry in Diverse Dimensions, arXiv:1612.00809 [INSPIRE].
  15. [15]
    K.A. Intriligator and N. Seiberg, Mirror symmetry in three-dimensional gauge theories, Phys. Lett. B 387 (1996) 513 [hep-th/9607207] [INSPIRE].
  16. [16]
    O. Bergman and G. Zafrir, Lifting 4d dualities to 5d, JHEP 04 (2015) 141 [arXiv:1410.2806] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    P. Jefferson, H.-C. Kim, C. Vafa and G. Zafrir, Towards Classification of 5d SCFTs: Single Gauge Node, arXiv:1705.05836 [INSPIRE].
  18. [18]
    P. Jefferson, S. Katz, H.-C. Kim and C. Vafa, On Geometric Classification of 5d SCFTs, JHEP 04 (2018) 103 [arXiv:1801.04036] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    H. Hayashi, S.-S. Kim, K. Lee and F. Yagi, Dualities and 5-brane webs for 5d rank 2 SCFTs, JHEP 12 (2018) 016 [arXiv:1806.10569] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    O. Bergman, D. Rodríguez-Gómez and G. Zafrir, 5-Brane Webs, Symmetry Enhancement and Duality in 5d Supersymmetric Gauge Theory, JHEP 03 (2014) 112 [arXiv:1311.4199] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    H. Hayashi, S.-S. Kim, K. Lee, M. Taki and F. Yagi, A new 5d description of 6d D-type minimal conformal matter, JHEP 08 (2015) 097 [arXiv:1505.04439] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    K. Yonekura, Instanton operators and symmetry enhancement in 5d supersymmetric quiver gauge theories, JHEP 07 (2015) 167 [arXiv:1505.04743] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    D. Gaiotto and H.-C. Kim, Duality walls and defects in 5d \( \mathcal{N}=1 \) theories, JHEP 01 (2017) 019 [arXiv:1506.03871] [INSPIRE].
  24. [24]
    G. Ferlito and A. Hanany, A tale of two cones: the Higgs Branch of Sp (n) theories with 2n flavours, arXiv:1609.06724 [INSPIRE].
  25. [25]
    N. Seiberg, Five-dimensional SUSY field theories, nontrivial fixed points and strin dynamics, Phys. Lett. B 388 (1996) 753 [hep-th/9608111] [INSPIRE].
  26. [26]
    D.R. Morrison and N. Seiberg, Extremal transitions and five-dimensional supersymmetric field theories, Nucl. Phys. B 483 (1997) 229 [hep-th/9609070] [INSPIRE].
  27. [27]
    K. Altmann, The versal Deformation of an isolated toric Gorenstein Singularity, alg-geom/9403004.
  28. [28]
    K. Altmann, Infinitesimal Deformations and Obstructions for Toric Singularities, alg-geom/9405008.
  29. [29]
    S. Franco, A. Hanany, F. Saad and A.M. Uranga, Fractional branes and dynamical supersymmetry breaking, JHEP 01 (2006) 011 [hep-th/0505040] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    P. Boalch, Simply-laced isomonodromy systems, Publications mathématiques de l’IH ÉS 116 (2012)1 [arXiv:1107.0874].
  31. [31]
    D. Xie, General Argyres-Douglas Theory, JHEP 01 (2013) 100 [arXiv:1204.2270] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    M. Del Zotto and A. Hanany, Complete Graphs, Hilbert Series and the Higgs branch of the 4d \( \mathcal{N}=2 \) (A n , A m) SCFTs, Nucl. Phys. B 894 (2015) 439 [arXiv:1403.6523] [INSPIRE].
  33. [33]
    E. Brugallé and K. Shaw, A bit of tropical geometry, arXiv:1311.2360.
  34. [34]
    D. Collingwood and W. McGovern, Nilpotent Orbits In Semisimple Lie Algebra: An Introduction, Mathematics series, Taylor & Francis, (1993).Google Scholar
  35. [35]
    H. Kraft and C. Procesi, On the geometry of conjugacy classes in classical groups, Comment. Math. Helv. 57 (1982) 539.MathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    A. Hanany and N. Mekareeya, The small E 8 instanton and the Kraft Procesi transition, JHEP 07 (2018) 098 [arXiv:1801.01129] [INSPIRE].
  37. [37]
    S. Cabrera and A. Hanany, Quiver Subtractions, JHEP 09 (2018) 008 [arXiv:1803.11205] [INSPIRE].
  38. [38]
    M. Taki, Seiberg Duality, 5d SCFTs and Nekrasov Partition Functions, arXiv:1401.7200 [INSPIRE].
  39. [39]
    O. Bergman, A. Hanany, A. Karch and B. Kol, Branes and supersymmetry breaking in three-dimensional gauge theories, JHEP 10 (1999) 036 [hep-th/9908075] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  40. [40]
    O. Bergman and A. Fayyazuddin, String junction transitions in the moduli space of N = 2 SYM, Nucl. Phys. B 535 (1998) 139 [hep-th/9806011] [INSPIRE].
  41. [41]
    L. Bao, V. Mitev, E. Pomoni, M. Taki and F. Yagi, Non-Lagrangian Theories from Brane Junctions, JHEP 01 (2014) 175 [arXiv:1310.3841] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    O. Bergman and G. Zafrir, 5d fixed points from brane webs and O7-planes, JHEP 12 (2015) 163 [arXiv:1507.03860] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  43. [43]
    S. Cremonesi, G. Ferlito, A. Hanany and N. Mekareeya, Coulomb Branch and The Moduli Space of Instantons, JHEP 12 (2014) 103 [arXiv:1408.6835] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    A. Hanany, N. Mekareeya and S.S. Razamat, Hilbert Series for Moduli Spaces of Two Instantons, JHEP 01 (2013) 070 [arXiv:1205.4741] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Theoretical Physics, The Blackett LaboratoryImperial College LondonLondonUnited Kingdom
  2. 2.School of MathematicsSouthwest Jiaotong UniversityChengduChina
  3. 3.Department of Physics, Technion — Israel Institute of TechnologyHaifaIsrael

Personalised recommendations