Advertisement

Unparticle decay of neutrinos and its possible signatures at Km2 detector for (3+1) flavour framework

  • Madhurima PandeyEmail author
Open Access
Regular Article - Theoretical Physics
  • 36 Downloads

Abstract

We consider a scenario where ultra high energy neutrinos undergo unparticle decay during its passage from its cosmological source to Earth. The idea of unparticle had been first proposed by Georgi by considering the possible existence of an unknown scale invariant sector at high energies and the unparticles in this sector manifest itself below a dimensional transmutation scale \( {\Lambda}_{\mathcal{U}} \). We then explore the possible signature of such decaying neutrinos to unparticles at a square kilometer detector such as IceCube.

Keywords

Beyond Standard Model Cosmology of Theories beyond the SM Neutrino Physics 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    H. Georgi, Unparticle physics, Phys. Rev. Lett. 98 (2007) 221601 [hep-ph/0703260] [INSPIRE].
  2. [2]
    H. Georgi, Another odd thing about unparticle physics, Phys. Lett. B 650 (2007) 275 [arXiv:0704.2457] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    K. Cheung, W.-Y. Keung and T.-C. Yuan, Collider signals of unparticle physics, Phys. Rev. Lett. 99 (2007) 051803 [arXiv:0704.2588] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    T. Banks and A. Zaks, On the phase structure of vector-like gauge theories with massless fermions, Nucl. Phys. B 196 (1982) 189 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    S.R. Coleman and E.J. Weinberg, Radiative corrections as the origin of spontaneous symmetry breaking, Phys. Rev. D 7 (1973) 1888 [INSPIRE].ADSGoogle Scholar
  6. [6]
    T. Kikuchi and N. Okada, Unparticle physics and Higgs phenomenology, Phys. Lett. B 661 (2008) 360 [arXiv:0707.0893] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  7. [7]
    C.H. Chen and C.Q. Geng, Unparticle physics effects on direct CP violatio, Phys. Rev. D 76 (2007) 115003.ADSGoogle Scholar
  8. [8]
    T.M. Aliev, A.S. Cornell and N. Gaur, Lepton flavour violation in unparticle physics, Phys. Lett. B 657 (2007) 77 [arXiv:0705.1326] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    T.M. Aliev, A.S. Cornell and N. Gaur, BK(K *) missing energy in Unparticle physics, JHEP 07 (2007) 072 [arXiv:0705.4542] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    X.Q. Li, Z.T. Wei, Unparticle physics effects on \( {D}^0\hbox{--} {\overline{D}}^0 \) mixing, Phys. Lett. B 651 (2007) 380.ADSCrossRefGoogle Scholar
  11. [11]
    M. Duraisamy, Unparticle physics in e + e PP annihilation, arXiv:0705.2622 [INSPIRE].
  12. [12]
    D. Choudhury, D.K. Ghosh and Mamta, Unparticles and muon decay, Phys. Lett. B 658 (2008) 148 [arXiv:0705.3637] [INSPIRE].
  13. [13]
    C.-D. Lu, W. Wang and Y.-M. Wang, Lepton flavor violating processes in unparticle physics, Phys. Rev. D 76 (2007) 077701 [arXiv:0705.2909] [INSPIRE].ADSGoogle Scholar
  14. [14]
    N. Greiner, Constraints on unparticle physics in electroweak gauge boson scattering, Phys. Lett. B 653 (2007) 75.ADSCrossRefGoogle Scholar
  15. [15]
    H. Davoudiasl, Constraining unparticle physics with cosmology and astrophysics, Phys. Rev. Lett. 99 (2007) 141301 [arXiv:0705.3636] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    P. Mathews and V. Ravindran, Unparticle physics at hadron collider via dilepton production, Phys. Lett. B 657 (2007) 198 [arXiv:0705.4599] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    D. Majumdar, Unparticle decay of neutrinos and it’s effect on ultra high energy neutrinos, arXiv:0708.3485 [INSPIRE].
  18. [18]
    G.-J. Ding and M.-L. Yan, Signals of unparticles in low energy parity violation and the NuTeV experiment, Phys. Rev. D 78 (2008) 075015 [arXiv:0706.0325] [INSPIRE].ADSGoogle Scholar
  19. [19]
    A. Lenz, Unparticle physics effects in \( {B}_s-{\overline{B}}_s \) mixing, Phys. Rev. D 76 (2007) 065006 [arXiv:0707.1535] [INSPIRE].ADSGoogle Scholar
  20. [20]
    D. Choudhury and D.K. Ghosh, Top off the unparticle, Int. J. Mod. Phys. A 23 (2008) 2579 [arXiv:0707.2074] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  21. [21]
    M. Luo and G. Zhu, Some phenomenologies of unparticle physics, Phys. Lett. B 659 (2008) 341 [arXiv:0704.3532] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    N.G. Deshpande, X.-G. He and J. Jiang, Supersymmetric unparticle effects on Higgs boson mass and dark matter, Phys. Lett. B 656 (2007) 91 [arXiv:0707.2959] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    M. Neubert, Unparticle physics with jets, Phys. Lett. B 660 (2008) 592 [arXiv:0708.0036] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    G. Bhattacharyya, D. Choudhury and D.K. Ghosh, Unraveling unparticles through violation of atomic parity and rare beauty, Phys. Lett. B 655 (2007) 261 [arXiv:0708.2835] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    Z.-H. Li, Y. Li and H.-X. Xu, Unparticle-induced lepton flavor violating decays τ l (V 0 , P 0), Phys. Lett. B 677 (2009) 150 [arXiv:0901.3266] [INSPIRE].
  26. [26]
    A. Delgado, J.R. Espinosa, J.M. No and M. Quirós, A note on unparticle decays, Phys. Rev. D 79 (2009) 055011 [arXiv:0812.1170] [INSPIRE].ADSGoogle Scholar
  27. [27]
    E.O. Iltan, Lepton flavor violating Higgs decays induced by massive unparticle, Acta Phys. Polon. B 41 (2010) 2423 [arXiv:1006.2095] [INSPIRE].Google Scholar
  28. [28]
    G.A. Kozlov and I.N. Gorbunov, On decays of Zinto unparticle stuff, Adv. High Energy Phys. 2011 (2011) 975237 [arXiv:1009.0103].CrossRefzbMATHGoogle Scholar
  29. [29]
    K.-S. Sun et al., Lepton flavor violation decays of vector mesons in unparticle physics, Mod. Phys. Lett. A 27 (2012) 1250172 [arXiv:1312.2072] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  30. [30]
    M. Ettefaghi, R. Moazzemi and M. Rousta, Constraining unparticle physics from CP violation in Cabibbo-favored decays of D mesons, Phys. Rev. D 95 (2017) 095027 [arXiv:1705.06330] [INSPIRE].ADSGoogle Scholar
  31. [31]
    M.M. Ettefaghi and M. Dehghani, The decay of singlet scalar dark matter to unparticle and photon, arXiv:0805.0682.
  32. [32]
    T. Kikuchi and N. Okada, Unparticle dark matter, Phys. Lett. B 665 (2008) 186 [arXiv:0711.1506] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    S. Chen and J. Jing, Dark energy interacting with dark matter and unparticle, Class. Quant. Grav. 26 (2009) 155006 [arXiv:0903.0120] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    D.-C. Dai, S. Dutta and D. Stojkovic, Unparticle dark energy, Phys. Rev. D 80 (2009) 063522 [arXiv:0909.0024] [INSPIRE].ADSGoogle Scholar
  35. [35]
    M. Jamil, D. Momeni and M.A. Rashid, Notes on dark energy interacting with dark matter and unparticle in loop quantum cosmology, Eur. Phys. J. C 71 (2011) 1711 [arXiv:1107.1558] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    IceCube collaboration, Observation of astrophysical neutrinos in six years of IceCube data, in the proceedings of the 35th International Cosmic Ray Conference (ICRC2017), July 10–14, Bexco, Busan, Korea (2017), http://icecube.wisc.edu.
  37. [37]
    P. Adamson et al., The NuMI neutrino beam, Nucl. Instrum. Meth. A 806 (2016) 279 [arXiv:1507.06690] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    MINOS collaboration, Search for sterile neutrinos mixing with muon neutrinos in MINOS, Phys. Rev. Lett. 117 (2016) 151803 [arXiv:1607.01176] [INSPIRE].
  39. [39]
    MINOS collaboration, Search for sterile neutrinos in MINOS and MINOS+ using a two-detector fit, arXiv:1710.06488 [INSPIRE].
  40. [40]
    MINOS collaboration, Electron neutrino and antineutrino appearance in the full MINOS data sample, Phys. Rev. Lett. 110 (2013) 171801 [arXiv:1301.4581] [INSPIRE].
  41. [41]
    MINOS collaboration, Active to sterile neutrino mixing limits from neutral-current interactions in MINOS, Phys. Rev. Lett. 107 (2011) 011802 [arXiv:1104.3922] [INSPIRE].
  42. [42]
    MINOS collaboration, Observation of muon neutrino disappearance with the MINOS detectors and the NuMI neutrino beam, Phys. Rev. Lett. 97 (2006) 191801 [hep-ex/0607088] [INSPIRE].
  43. [43]
    MINOS collaboration, Search for active neutrino disappearance using neutral-current interactions in the MINOS long-baseline experiment, Phys. Rev. Lett. 101 (2008) 221804 [arXiv:0807.2424] [INSPIRE].
  44. [44]
    MINOS collaboration, Combined analysis of ν μ disappearance and ν μν e appearance in MINOS using accelerator and atmospheric neutrinos, Phys. Rev. Lett. 112 (2014) 191801 [arXiv:1403.0867] [INSPIRE].
  45. [45]
    MINOS collaboration, Search for sterile neutrino mixing in the MINOS long baseline experiment, Phys. Rev. D 81 (2010) 052004 [arXiv:1001.0336] [INSPIRE].
  46. [46]
    MINOS collaboration, The MINOS calibration detector, Nucl. Instrum. Meth. A 596 (2008) 190 [arXiv:0805.3170].
  47. [47]
    MINOS collaboration, A study of muon neutrino disappearance using the Fermilab main injector neutrino beam, Phys. Rev. D 77 (2008) 072002 [arXiv:0711.0769] [INSPIRE].
  48. [48]
    Daya Bay and MINOS collaborations, Limits on active to sterile neutrino oscillations from disappearance searches in the MINOS, Daya Bay, and Bugey-3 experiments, Phys. Rev. Lett. 117 (2016) 151801 [arXiv:1607.01177].
  49. [49]
    Daya Bay collaboration, Observation of electron-antineutrino disappearance at Daya Bay, Phys. Rev. Lett. 108 (2012) 171803 [arXiv:1203.1669] [INSPIRE].
  50. [50]
    Daya-Bay collaboration, Improved search for a light sterile neutrino with the full configuration of the Daya Bay experiment, Phys. Rev. Lett. 117 (2016) 151802 [arXiv:1607.01174].
  51. [51]
    Daya Bay collaboration, The detector system of the Daya Bay reactor neutrino experiment, Nucl. Instrum. Meth. A 811 (2016) 133 [arXiv:1508.03943] [INSPIRE].
  52. [52]
    Daya Bay collaboration, Spectral measurement of electron antineutrino oscillation amplitude and frequency at Daya Bay, Phys. Rev. Lett. 112 (2014) 061801 [arXiv:1310.6732] [INSPIRE].
  53. [53]
    Daya Bay collaboration, Measurement of the reactor antineutrino flux and spectrum at Daya Bay, Phys. Rev. Lett. 116 (2016) 061801 [Erratum ibid. 118 (2017) 099902] [arXiv:1508.04233] [INSPIRE].
  54. [54]
    Daya Bay collaboration, New measurement of antineutrino oscillation with the full detector configuration at Daya Bay, Phys. Rev. Lett. 115 (2015) 111802 [arXiv:1505.03456] [INSPIRE].
  55. [55]
    Daya Bay collaboration, Search for a light sterile neutrino at Daya Bay, Phys. Rev. Lett. 113 (2014) 141802 [arXiv:1407.7259] [INSPIRE].
  56. [56]
    Y. Declais et al., Search for neutrino oscillations at 15-meters, 40-meters and 95-meters from a nuclear power reactor at Bugey, Nucl. Phys. B 434 (1995) 503 [INSPIRE].ADSGoogle Scholar
  57. [57]
    E. Waxman and J.N. Bahcall, High-energy neutrinos from cosmological gamma-ray burst fireballs, Phys. Rev. Lett. 78 (1997) 2292 [astro-ph/9701231] [INSPIRE].
  58. [58]
    N. Gupta, Neutrino induced upward going muons from a gamma-ray burst in a neutrino telescope of KM**2 area, Phys. Rev. D 65 (2002) 113005 [astro-ph/0201509] [INSPIRE].
  59. [59]
    D. Guetta, M. Spada and E. Waxman, On the neutrino flux from gamma-ray bursts, Astrophys. J. 559 (2001) 101 [astro-ph/0102487].
  60. [60]
    N. Gupta and P. Bhattacharjee, Detecting TeV gamma-rays from gamma-ray bursts by ground based muon detectors, astro-ph/0108311 [INSPIRE].
  61. [61]
    P. Baerwald, M. Bustamante and W. Winter, Neutrino Decays over Cosmological Distances and the Implications for Neutrino Telescopes, JCAP 10 (2012) 020 [arXiv:1208.4600] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    S. Zhou, Neutrino decays and neutrino electron scattering in unparticle physics, Phys. Lett. B 659 (2008) 336 [arXiv:0706.0302].ADSCrossRefGoogle Scholar
  63. [63]
    Z. Maki, M. Nakagawa and S. Sakata, Remarks on the unified model of elementary particle, Prog. Theor. Phys. 28 (1962) 870.ADSCrossRefzbMATHGoogle Scholar
  64. [64]
    J.F. Beacom, N.F. Bell, D. Hooper, S. Pakvasa and T.J. Weiler, Decay of high-energy astrophysical neutrinos, Phys. Rev. Lett. 90 (2003) 181301 [hep-ph/0211305] [INSPIRE].
  65. [65]
    S.K. Kang, Y.D. Kim, Y.J. Ko and K. Siyeon, Four-neutrino analysis of 1.5 km baseline reactor antineutrino oscillations, Adv. High Energy Phys. 2013 (2013) 138109.Google Scholar
  66. [66]
    H. Athar, M. Jezabek and O. Yasuda, Effects of neutrino mixing on high-energy cosmic neutrino flux, Phys. Rev. D 62 (2000) 103007 [hep-ph/0005104] [INSPIRE].
  67. [67]
    D. Majumdar and A. Ghosal, Probing derivations from tribimaximal mixing through ultrahigh energy neutrino signals, Phys. Rev. D 75 (2007) 11304.Google Scholar
  68. [68]
    M. Pandey, D. Majumdar and A. Dutta Banik, Probing a four flavor vis-a-vis three flavor neutrino mixing for ultrahigh energy neutrino signals at a 1 Km2 detector, Phys. Rev. D 97 (2018) 103015 [arXiv:1711.05018] [INSPIRE].ADSGoogle Scholar
  69. [69]
    S. Pakvasa, Charged lepton oscillations, Lett. Nuovo Cim. 31 (1981) 497 [INSPIRE].CrossRefGoogle Scholar
  70. [70]
    Y. Farzan and A. Yu. Smirnov, Leptonic unitarity triangle and CP-violation, Phys. Rev. D 65 (2002) 113001 [hep-ph/0201105] [INSPIRE].
  71. [71]
    R. Gandhi, C. Quigg, M.H. Reno and I. Sarcevic, Neutrino interactions at ultrahigh-energies, Phys. Rev. D 58 (1998) 093009 [hep-ph/9807264] [INSPIRE].
  72. [72]
    R. Gandhi, C. Quigg, M.H. Reno and I. Sarcevic, Ultrahigh-energy neutrino interactions, Astropart. Phys. 5 (1996) 81 [hep-ph/9512364] [INSPIRE].
  73. [73]
    T.K. Gaisser, Cosmic rays and particle physics, Cambridge University Press, Cambridge U.K. (1992).Google Scholar
  74. [74]
    T.K. Gaisser, F. Halzen and T. Stanev, Particle astrophysics with high-energy neutrinos, Phys. Rept. 258 (1995) 173 [Erratum ibid. 271 (1996) 355] [hep-ph/9410384] [INSPIRE].
  75. [75]
    A. Dziewonski, Earth stucture, global, in The Encyclopedia of Solid Earth Geophysics, D.E. James, ed., Van Nostrand Reinhold, New York U.S.A. (1989).Google Scholar
  76. [76]
    A. Dar, J.J. Lord and R.J. Wilkes, On the nature of the high-energy particles from Cygnus X-3, Phys. Rev. D 33 (1986) 303 [INSPIRE].ADSGoogle Scholar
  77. [77]
    N. Gupta, The appearance of tau neutrinos from a gamma-ray burst, Phys. Lett. B 541 (2002) 16 [astro-ph/0205451] [INSPIRE].
  78. [78]
    S.I. Dutta, M.H. Reno and I. Sarcevic, Tau neutrinos underground: signals of muon-neutrinoτ neutrino oscillations with extragalactic neutrinos, Phys. Rev. D 62 (2000) 123001 [hep-ph/0005310] [INSPIRE].
  79. [79]
    Planck collaboration, Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].
  80. [80]
    NOvA collaboration, NOvA: proposal to build a 30 Kiloton off-axis detector to study ν μν e oscillations in the NuMI beamline, hep-ex/0503053 [INSPIRE].
  81. [81]
    NOvA collaboration, First measurement of electron neutrino appearance in NOvA, Phys. Rev. Lett. 116 (2016) 151806 [arXiv:1601.05022] [INSPIRE].
  82. [82]
    NOvA collaboration, Constraints on oscillation parameters from ν e appearance and ν μ disappearance in NOvA, Phys. Rev. Lett. 118 (2017) 231801 [arXiv:1703.03328] [INSPIRE].
  83. [83]
    NOvA collaboration, First measurement of muon-neutrino disappearance in NOvA, Phys. Rev. D 93 (2016) 051104.Google Scholar
  84. [84]
    NOvA collaboration, Measurement of the neutrino mixing angle θ 23 in NOvA, Phys. Rev. Lett. 118 (2017) 151802 [arXiv:1701.05891] [INSPIRE].
  85. [85]
    IceCube collaboration, Search for sterile neutrino mixing using three years of IceCube DeepCore data, Phys. Rev. D 95 (2017) 112002 [arXiv:1702.05160] [INSPIRE].
  86. [86]
    IceCube, Fermi-LAT, MAGIC, AGILE, ASAS-SN, HAWC, H.E.S.S., INTEGRAL, Kanata, Kiso, Kapteyn, Liverpool Telescope, Subaru, Swift NuSTAR, VERITAS, VLA/17B-403 collaborations, Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A, Science 361 (2018) 1378.Google Scholar
  87. [87]
    IceCube collaboration, Neutrino emission from the direction of the blazar TXS 0506+056 prior to the IceCube-170922A alert, Science 361 (2018) 147 [arXiv:1807.08794] [INSPIRE].
  88. [88]
    S. Gao, A. Fedynitch, W. Winter and M. Pohl, Interpretation of the coincident observation of a high energy neutrino and a bright flare, arXiv:1807.04275 [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Astroparticle Physics and Cosmology Division, Saha Institute of Nuclear Physics, HBNIKolkataIndia

Personalised recommendations