Advertisement

Localization and non-renormalization in Chern-Simons theory

  • Yale FanEmail author
Open Access
Regular Article - Theoretical Physics
  • 35 Downloads

Abstract

We revisit and clarify some aspects of perturbative renormalization in pure Chern-Simons theory by means of a localization principle associated with an underlying supersymmetry. This perspective allows the otherwise perturbative one-loop shifts to be interpreted as nonperturbative consequences of a non-renormalization theorem, while providing a unified understanding of their origin (particularly in the case of Wilson lines). We illustrate this approach explicitly for SU(2) Chern-Simons theory in flat space, on Seifert manifolds, and on a solid torus.

Keywords

Chern-Simons Theories Supersymmetric Gauge Theory Topological Field Theories 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    D. Birmingham, M. Blau, M. Rakowski and G. Thompson, Topological field theory, Phys. Rept. 209 (1991) 129 [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  2. [2]
    J. Kallen, Cohomological localization of Chern-Simons theory, JHEP 08 (2011) 008 [arXiv:1104.5353] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  3. [3]
    W. Chen, G.W. Semenoff and Y.-S. Wu, Two loop analysis of nonAbelian Chern-Simons theory, Phys. Rev. D 46 (1992) 5521 [hep-th/9209005] [INSPIRE].ADSMathSciNetGoogle Scholar
  4. [4]
    E. Witten, Supersymmetric index of three-dimensional gauge theory, hep-th/9903005 [INSPIRE].
  5. [5]
    S.R. Coleman and B.R. Hill, No More Corrections to the Topological Mass Term in QED in Three-Dimensions, Phys. Lett. B 159 (1985) 184 [INSPIRE].ADSGoogle Scholar
  6. [6]
    C. Closset, T.T. Dumitrescu, G. Festuccia, Z. Komargodski and N. Seiberg, Contact Terms, Unitarity and F-Maximization in Three-Dimensional Superconformal Theories, JHEP 10 (2012) 053 [arXiv:1205.4142] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  7. [7]
    C. Closset, T.T. Dumitrescu, G. Festuccia, Z. Komargodski and N. Seiberg, Comments on Chern-Simons Contact Terms in Three Dimensions, JHEP 09 (2012) 091 [arXiv:1206.5218] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  8. [8]
    R.J. Szabo, Equivariant localization of path integrals, hep-th/9608068 [INSPIRE].
  9. [9]
    V. Pestun et al., Localization techniques in quantum field theories, J. Phys. A 50 (2017) 440301 [arXiv:1608.02952] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  10. [10]
    E. Witten, Quantum Field Theory and the Jones Polynomial, Commun. Math. Phys. 121 (1989) 351 [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  11. [11]
    M. Blau and G. Thompson, Derivation of the Verlinde formula from Chern-Simons theory and the G/G model, Nucl. Phys. B 408 (1993) 345 [hep-th/9305010] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  12. [12]
    M. Blau and G. Thompson, Chern-Simons theory on S1-bundles: Abelianisation and q-deformed Yang-Mills theory, JHEP 05 (2006) 003 [hep-th/0601068] [INSPIRE].ADSGoogle Scholar
  13. [13]
    C. Beasley and E. Witten, Non-Abelian localization for Chern-Simons theory, J. Diff. Geom. 70 (2005) 183 [hep-th/0503126] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  14. [14]
    C. Beasley, Localization for Wilson Loops in Chern-Simons Theory, Adv. Theor. Math. Phys. 17 (2013) 1 [arXiv:0911.2687] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  15. [15]
    A. Kapustin, B. Willett and I. Yaakov, Exact Results for Wilson Loops in Superconformal Chern-Simons Theories with Matter, JHEP 03 (2010) 089 [arXiv:0909.4559] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  16. [16]
    A. Kapustin, B. Willett and I. Yaakov, Tests of Seiberg-like Duality in Three Dimensions, arXiv:1012.4021 [INSPIRE].
  17. [17]
    O. Aharony, Baryons, monopoles and dualities in Chern-Simons-matter theories, JHEP 02 (2016) 093 [arXiv:1512.00161] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  18. [18]
    O. Aharony, A. Hanany, K.A. Intriligator, N. Seiberg and M.J. Strassler, Aspects of N = 2 supersymmetric gauge theories in three-dimensions, Nucl. Phys. B 499 (1997) 67 [hep-th/9703110] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  19. [19]
    M. Stone, Supersymmetry and the Quantum Mechanics of Spin, Nucl. Phys. B 314 (1989) 557 [INSPIRE].ADSMathSciNetGoogle Scholar
  20. [20]
    D. Stanford and E. Witten, Fermionic Localization of the Schwarzian Theory, JHEP 10 (2017) 008 [arXiv:1703.04612] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  21. [21]
    S. Elitzur, G.W. Moore, A. Schwimmer and N. Seiberg, Remarks on the Canonical Quantization of the Chern-Simons-Witten Theory, Nucl. Phys. B 326 (1989) 108 [INSPIRE].ADSMathSciNetGoogle Scholar
  22. [22]
    V. Mikhaylov and E. Witten, Branes And Supergroups, Commun. Math. Phys. 340 (2015) 699 [arXiv:1410.1175] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  23. [23]
    M. Schottenloher, A mathematical introduction to conformal field theory, Lect. Notes Phys. 759 (2008) 1.MathSciNetzbMATHGoogle Scholar
  24. [24]
    C. Closset, T.T. Dumitrescu, G. Festuccia and Z. Komargodski, Supersymmetric Field Theories on Three-Manifolds, JHEP 05 (2013) 017 [arXiv:1212.3388] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  25. [25]
    C. Closset, T.T. Dumitrescu, G. Festuccia and Z. Komargodski, The Geometry of Supersymmetric Partition Functions, JHEP 01 (2014) 124 [arXiv:1309.5876] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  26. [26]
    K. Ohta and Y. Yoshida, Non-Abelian Localization for Supersymmetric Yang-Mills-Chern-Simons Theories on Seifert Manifold, Phys. Rev. D 86 (2012) 105018 [arXiv:1205.0046] [INSPIRE].ADSGoogle Scholar
  27. [27]
    R. Dijkgraaf and E. Witten, Topological Gauge Theories and Group Cohomology, Commun. Math. Phys. 129 (1990) 393 [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  28. [28]
    H.-C. Kao, K.-M. Lee and T. Lee, The Chern-Simons coefficient in supersymmetric Yang-Mills Chern-Simons theories, Phys. Lett. B 373 (1996) 94 [hep-th/9506170] [INSPIRE].MathSciNetGoogle Scholar
  29. [29]
    A.N. Redlich, Gauge Noninvariance and Parity Violation of Three-Dimensional Fermions, Phys. Rev. Lett. 52 (1984) 18 [INSPIRE].ADSMathSciNetGoogle Scholar
  30. [30]
    A.N. Redlich, Parity Violation and Gauge Noninvariance of the Effective Gauge Field Action in Three-Dimensions, Phys. Rev. D 29 (1984) 2366 [INSPIRE].ADSMathSciNetGoogle Scholar
  31. [31]
    R.D. Pisarski and S. Rao, Topologically Massive Chromodynamics in the Perturbative Regime, Phys. Rev. D 32 (1985) 2081 [INSPIRE].ADSGoogle Scholar
  32. [32]
    M. Mariño, Chern-Simons theory, matrix integrals and perturbative three manifold invariants, Commun. Math. Phys. 253 (2004) 25 [hep-th/0207096] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  33. [33]
    M. Mariño, Chern-Simons theory, matrix models and topological strings, Int. Ser. Monogr. Phys. 131 (2005) 1 [INSPIRE].MathSciNetzbMATHGoogle Scholar
  34. [34]
    F. Benini and A. Zaffaroni, A topologically twisted index for three-dimensional supersymmetric theories, JHEP 07 (2015) 127 [arXiv:1504.03698] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  35. [35]
    F. Benini and A. Zaffaroni, Supersymmetric partition functions on Riemann surfaces, Proc. Symp. Pure Math. 96 (2017) 13 [arXiv:1605.06120] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  36. [36]
    C. Closset and H. Kim, Comments on twisted indices in 3d supersymmetric gauge theories, JHEP 08 (2016) 059 [arXiv:1605.06531] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  37. [37]
    G.W. Moore and N. Seiberg, Taming the Conformal Zoo, Phys. Lett. B 220 (1989) 422 [INSPIRE].ADSMathSciNetGoogle Scholar
  38. [38]
    A. Kapustin, B. Willett and I. Yaakov, Exact results for supersymmetric abelian vortex loops in 2+1 dimensions, JHEP 06 (2013) 099 [arXiv:1211.2861] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  39. [39]
    N. Drukker, T. Okuda and F. Passerini, Exact results for vortex loop operators in 3d supersymmetric theories, JHEP 07 (2014) 137 [arXiv:1211.3409] [INSPIRE].ADSGoogle Scholar
  40. [40]
    K. Hosomichi, A Review on SUSY Gauge Theories on S 3, in New Dualities of Supersymmetric Gauge Theories, J. Teschner ed., pp. 307–338, Springer (2016) [DOI: https://doi.org/10.1007/978-3-319-18769-3_10] [arXiv:1412.7128] [INSPIRE].
  41. [41]
    J. Wess and J. Bagger, Supersymmetry and Supergravity, Princeton, U.S.A., Princeton University Press (1992) [INSPIRE].zbMATHGoogle Scholar
  42. [42]
    G.V. Dunne, Aspects of Chern-Simons theory, in Topological Aspects of Low-dimensional Systems: Proceedings, Les Houches Summer School of Theoretical Physics, Session 69, Les Houches, France, July 7–31 1998 [hep-th/9902115] [INSPIRE].
  43. [43]
    S. Elitzur, Y. Frishman, E. Rabinovici and A. Schwimmer, Origins of Global Anomalies in Quantum Mechanics, Nucl. Phys. B 273 (1986) 93 [INSPIRE].ADSMathSciNetGoogle Scholar
  44. [44]
    Y. Noma, Coadjoint Orbits and Wilson Loops in Five Dimensional Topological Gauge Theories, arXiv:0911.2386 [INSPIRE].
  45. [45]
    E.A. Ivanov, Chern-Simons matter systems with manifest N = 2 supersymmetry, Phys. Lett. B 268 (1991) 203 [INSPIRE].ADSMathSciNetGoogle Scholar
  46. [46]
    B. Willett, Localization on three-dimensional manifolds, J. Phys. A 50 (2017) 443006 [arXiv:1608.02958] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  47. [47]
    M. Aganagic, A. Klemm, M. Mariño and C. Vafa, Matrix model as a mirror of Chern-Simons theory, JHEP 02 (2004) 010 [hep-th/0211098] [INSPIRE].ADSMathSciNetGoogle Scholar
  48. [48]
    V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  49. [49]
    D. Gaiotto and X. Yin, Notes on superconformal Chern-Simons-Matter theories, JHEP 08 (2007) 056 [arXiv:0704.3740] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  50. [50]
    N. Hama, K. Hosomichi and S. Lee, Notes on SUSY Gauge Theories on Three-Sphere, JHEP 03 (2011) 127 [arXiv:1012.3512] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  51. [51]
    D.L. Jafferis, The Exact Superconformal R-Symmetry Extremizes Z, JHEP 05 (2012) 159 [arXiv:1012.3210] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  52. [52]
    N. Hama, K. Hosomichi and S. Lee, SUSY Gauge Theories on Squashed Three-Spheres, JHEP 05 (2011) 014 [arXiv:1102.4716] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  53. [53]
    Y. Imamura and D. Yokoyama, N = 2 supersymmetric theories on squashed three-sphere, Phys. Rev. D 85 (2012) 025015 [arXiv:1109.4734] [INSPIRE].ADSGoogle Scholar
  54. [54]
    A. Tanaka, Comments on knotted 1/2 BPS Wilson loops, JHEP 07 (2012) 097 [arXiv:1204.5975] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  55. [55]
    A. Kapustin and B. Willett, Wilson loops in supersymmetric Chern-Simons-matter theories and duality, arXiv:1302.2164 [INSPIRE].
  56. [56]
    D. Gang, Chern-Simons theory on L(p, q) lens spaces and Localization, arXiv:0912.4664 [INSPIRE].
  57. [57]
    C. Closset, H. Kim and B. Willett, Supersymmetric partition functions and the three-dimensional A-twist, JHEP 03 (2017) 074 [arXiv:1701.03171] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  58. [58]
    S. Sugishita and S. Terashima, Exact Results in Supersymmetric Field Theories on Manifolds with Boundaries, JHEP 11 (2013) 021 [arXiv:1308.1973] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  59. [59]
    Y. Yoshida and K. Sugiyama, Localization of 3d \( \mathcal{N} \) = 2 Supersymmetric Theories on S 1 × D 2, arXiv:1409.6713 [INSPIRE].
  60. [60]
    S. Pasquetti, Factorisation of N = 2 Theories on the Squashed 3-Sphere, JHEP 04 (2012) 120 [arXiv:1111.6905] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  61. [61]
    C. Beem, T. Dimofte and S. Pasquetti, Holomorphic Blocks in Three Dimensions, JHEP 12 (2014) 177 [arXiv:1211.1986] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  62. [62]
    M. Fujitsuka, M. Honda and Y. Yoshida, Higgs branch localization of 3d \( \mathcal{N} \) = 2 theories, PTEP 2014 (2014) 123B02 [arXiv:1312.3627] [INSPIRE].
  63. [63]
    F. Benini and W. Peelaers, Higgs branch localization in three dimensions, JHEP 05 (2014) 030 [arXiv:1312.6078] [INSPIRE].ADSGoogle Scholar
  64. [64]
    G. Festuccia and N. Seiberg, Rigid Supersymmetric Theories in Curved Superspace, JHEP 06 (2011) 114 [arXiv:1105.0689] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  65. [65]
    Y. Imamura and S. Yokoyama, Index for three dimensional superconformal field theories with general R-charge assignments, JHEP 04 (2011) 007 [arXiv:1101.0557] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  66. [66]
    L.F. Alday, D. Martelli, P. Richmond and J. Sparks, Localization on Three-Manifolds, JHEP 10 (2013) 095 [arXiv:1307.6848] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  67. [67]
    L.F. Alday, M. Fluder and J. Sparks, The Large N limit of M2-branes on Lens spaces, JHEP 10 (2012) 057 [arXiv:1204.1280] [INSPIRE].ADSGoogle Scholar
  68. [68]
    E. Guadagnini, The Link invariants of the Chern-Simons field theory: New developments in topological quantum field theory, Berlin, Germany, de Gruyter (1993), de Gruyter Expositions in Mathematics 10 (1994) [INSPIRE].
  69. [69]
    M. Bos and V.P. Nair, Coherent State Quantization of Chern-Simons Theory, Int. J. Mod. Phys. A 5 (1990) 959 [INSPIRE].ADSMathSciNetGoogle Scholar
  70. [70]
    T. Dimofte, D. Gaiotto and N.M. Paquette, Dual boundary conditions in 3d SCFT’s, JHEP 05 (2018) 060 [arXiv:1712.07654] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  71. [71]
    N. Drukker, D.J. Gross and H. Ooguri, Wilson loops and minimal surfaces, Phys. Rev. D 60 (1999) 125006 [hep-th/9904191] [INSPIRE].ADSMathSciNetGoogle Scholar
  72. [72]
    N. Seiberg and E. Witten, Gapped Boundary Phases of Topological Insulators via Weak Coupling, PTEP 2016 (2016) 12C101 [arXiv:1602.04251] [INSPIRE].
  73. [73]
    E.P. Verlinde, Fusion Rules and Modular Transformations in 2D Conformal Field Theory, Nucl. Phys. B 300 (1988) 360 [INSPIRE].ADSzbMATHGoogle Scholar
  74. [74]
    M. Faizal, Y. Luo, D.J. Smith, M.-C. Tan and Q. Zhao, Gauge and supersymmetry invariance of \( \mathcal{N} \) = 2 boundary Chern-Simons theory, Nucl. Phys. B 914 (2017) 577 [arXiv:1601.05429] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  75. [75]
    P. Di Vecchia, V.G. Knizhnik, J.L. Petersen and P. Rossi, A Supersymmetric Wess-Zumino Lagrangian in Two-Dimensions, Nucl. Phys. B 253 (1985) 701 [INSPIRE].ADSGoogle Scholar
  76. [76]
    J. Fuchs, More on the Super WZW Theory, Nucl. Phys. B 318 (1989) 631 [INSPIRE].ADSMathSciNetGoogle Scholar
  77. [77]
    J. Bernatska and P. Holod, Geometry and topology of coadjoint orbits of semisimple Lie groups, in Geometry, Integrability, and Quantization IX, pp. 146–166, Softex, Sofia (2008) [DOI: https://doi.org/10.7546/giq-9-2008-146-166] [arXiv:0801.2913].
  78. [78]
    B. Assel and J. Gomis, Mirror Symmetry And Loop Operators, JHEP 11 (2015) 055 [arXiv:1506.01718] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  79. [79]
    K. Intriligator and N. Seiberg, Aspects of 3d N = 2 Chern-Simons-Matter Theories, JHEP 07 (2013) 079 [arXiv:1305.1633] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  80. [80]
    N. Doroud, J. Gomis, B. Le Floch and S. Lee, Exact Results in D = 2 Supersymmetric Gauge Theories, JHEP 05 (2013) 093 [arXiv:1206.2606] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  81. [81]
    M. Mariño, Lectures on localization and matrix models in supersymmetric Chern-Simons-matter theories, J. Phys. A 44 (2011) 463001 [arXiv:1104.0783] [INSPIRE].zbMATHGoogle Scholar
  82. [82]
    E. Witten, Nonabelian Bosonization in Two-Dimensions, Commun. Math. Phys. 92 (1984) 455 [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  83. [83]
    P. Di Francesco, P. Mathieu and D. Sénéchal, Conformal Field Theory, Graduate Texts in Contemporary Physics, Springer-Verlag, New York (1997) [DOI: https://doi.org/10.1007/978-1-4612-2256-9].
  84. [84]
    K. Hori et al., Mirror Symmetry, AMS, Providence, U.S.A. (2003) [INSPIRE].zbMATHGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of PhysicsPrinceton UniversityPrincetonU.S.A.

Personalised recommendations