Advertisement

On the spectrum and string tension of U(1) lattice gauge theory in 2 + 1 dimensions

  • Andreas Athenodorou
  • Michael TeperEmail author
Open Access
Regular Article - Theoretical Physics
  • 13 Downloads

Abstract

We calculate the low-lying spectra of glueballs and confining flux tubes in the U(1) lattice gauge theory in 2 + 1 dimensions. We see that up to modest lattice spacing corrections, the glueball states are consistent with being multiparticle states composed of non-interacting massive JPC = 0− − particles. We observe that the ag2 → 0 limit is, as expected, unconventional, and follows the well-known saddle-point analysis of Polyakov to a good approximation. The spectrum of closed (winding) flux tubes exhibits the presence of a massive world-sheet excitation whose mass is consistent with that of the bulk screening mass. These U(1) calculations are intended to complement existing lattice calculations of the properties of SU(N ≥ 2) and SO(N ≥ 3) gauge theories in D = 2 + 1.

Keywords

Lattice Quantum Field Theory Nonperturbative Effects Confinement Field Theories in Lower Dimensions 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    A.M. Polyakov, Compact gauge fields and the infrared catastrophe, Phys. Lett. B 59 (1975) 82 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    A.M. Polyakov, Quark confinement and topology of gauge groups, Nucl. Phys. B 120 (1977) 429 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    A. Polyakov, Gauge fields and strings, Harwood Academic Publishers, Reading U.S.A. (1987).Google Scholar
  4. [4]
    T. Banks, R. Myerson and J.B. Kogut, Phase transitions in Abelian lattice gauge theories, Nucl. Phys. B 129 (1977) 493 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    M. Gopfert and G. Mack, Proof of confinement of static quarks in three-dimensional U(1) lattice gauge theory for all values of the coupling constant, Commun. Math. Phys. 82 (1981) 545 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    M. Karliner and G. Mack, Mass gap and string tension in QED 3 comparison of theory with monte carlo simulation, Nucl. Phys. B 225 (1983) 371 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    K.R. Ito, Upper and lower bound for the string tension in the three-dimensional lattice quantum electrodynamics, Nucl. Phys. B 205 (1982) 440 [Erratum ibid. B 215 (1983) 136] [INSPIRE].
  8. [8]
    M. Loan, M. Brunner, C. Sloggett and C. Hamer, Path integral Monte Carlo approach to the U(1) lattice gauge theory in (2 + 1)-dimensions, Phys. Rev. D 68 (2003) 034504 [hep-lat/0209159] [INSPIRE].
  9. [9]
    M.J. Teper, SU(N) gauge theories in (2 + 1)-dimensions, Phys. Rev. D 59 (1999) 014512 [hep-lat/9804008] [INSPIRE].
  10. [10]
    A. Athenodorou and M. Teper, SU(N) gauge theories in 2 + 1 dimensions: glueball spectra and k-string tensions, JHEP 02 (2017) 015 [arXiv:1609.03873] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    R. Lau and M. Teper, SO(N) gauge theories in 2 + 1 dimensions: glueball spectra and confinement, JHEP 10 (2017) 022 [arXiv:1701.06941] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    M. Caselle, M. Panero and D. Vadacchino, Width of the flux tube in compact U(1) gauge theory in three dimensions, JHEP 02 (2016) 180 [arXiv:1601.07455] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    M. Caselle, M. Panero, R. Pellegrini and D. Vadacchino, A different kind of string, JHEP 01 (2015) 105 [arXiv:1406.5127] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    M. Teper, An improved method for lattice glueball calculations, Phys. Lett. B 183 (1987) 345 [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    O. Aharony and Z. Komargodski, The Effective Theory of Long Strings, JHEP 05 (2013) 118 [arXiv:1302.6257] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    O. Aharony and E. Karzbrun, On the effective action of confining strings, JHEP 06 (2009) 012 [arXiv:0903.1927] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    S. Dubovsky, R. Flauger and V. Gorbenko, Effective String Theory Revisited, JHEP 09 (2012) 044 [arXiv:1203.1054] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    M. Lüscher and P. Weisz, String excitation energies in SU(N) gauge theories beyond the free-string approximation, JHEP 07 (2004) 014 [hep-th/0406205] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    A. Athenodorou and M. Teper, Closed flux tubes in D = 2 + 1 SU(N) gauge theories: dynamics and effective string description, JHEP 10 (2016) 093 [arXiv:1602.07634] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    A. Athenodorou and M. Teper, Closed flux tubes in higher representations and their string description in D = 2 + 1 SU(N) gauge theories, JHEP 06 (2013) 053 [arXiv:1303.5946] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    A. Athenodorou, B. Bringoltz and M. Teper, Closed flux tubes and their string description in D = 2 + 1 SU(N) gauge theories, JHEP 05 (2011) 042 [arXiv:1103.5854] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    E. Seiler, Upper Bound on the Color Confining Potential, Phys. Rev. D 18 (1978) 482 [INSPIRE].ADSGoogle Scholar
  23. [23]
    T. Copeland, Monopoles and Confinement in U(1) Lattice Gauge Theory, Ph.D. Thesis, Oxford University, Oxford U.K. (1990).Google Scholar
  24. [24]
    R. Wensley, Monopoles And U(1) Lattice Gauge Theory, Ph.D Thesis, University of Illinois, Chicago U.S.A. (1989), preprint ILL-TH-89-25.Google Scholar
  25. [25]
    R.J. Wensley and J.D. Stack, Monopoles and Confinement in Three-dimensions, Phys. Rev. Lett. 63 (1989) 1764 [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    P.A.M. Dirac, Quantised singularities in the electromagnetic field, Proc. Roy. Soc. Lond. A 133 (1931) 60 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  27. [27]
    T.A. DeGrand and D. Toussaint, Topological Excitations and Monte Carlo Simulation of Abelian Gauge Theory, Phys. Rev. D 22 (1980) 2478 [INSPIRE].ADSGoogle Scholar
  28. [28]
    J. Villain, Theory of one- and two-dimensional magnets with an easy magnetization plane. II. The planar, classical, two-dimensional magnet, J. Phys. France 36 (1975) 581.Google Scholar
  29. [29]
    Z. Schram and M. Teper, Identifying monopoles on a lattice, Phys. Rev. D 48 (1993) 2881 [INSPIRE].ADSGoogle Scholar
  30. [30]
    B. Svetitsky and L.G. Yaffe, Critical Behavior at Finite Temperature Confinement Transitions, Nucl. Phys. B 210 (1982) 423 [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    J.M. Kosterlitz and D.J. Thouless, Ordering, metastability and phase transitions in two-dimensional systems, J. Phys. C 6 (1973) 1181 [INSPIRE].ADSGoogle Scholar
  32. [32]
    O. Borisenko, V. Chelnokov, M. Gravina and A. Papa, Deconfinement and universality in the 3D U(1) lattice gauge theory at finite temperature: study in the dual formulation, JHEP 09 (2015) 062 [arXiv:1507.00833] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    M.N. Chernodub, E.-M. Ilgenfritz and A. Schiller, A Lattice study of 3 − D compact QED at finite temperature, Phys. Rev. D 64 (2001) 054507 [hep-lat/0105021] [INSPIRE].
  34. [34]
    P.D. Coddington, A.J.G. Hey, A.A. Middleton and J.S. Townsend, The Deconfining Transition for Finite Temperature U(1) Lattice Gauge Theory in (2+1)-dimensions, Phys. Lett. B 175 (1986) 64 [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    S. Dubovsky, R. Flauger and V. Gorbenko, Flux Tube Spectra from Approximate Integrability at Low Energies, J. Exp. Theor. Phys. 120 (2015) 399 [arXiv:1404.0037] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    S. Dubovsky, R. Flauger and V. Gorbenko, Solving the Simplest Theory of Quantum Gravity, JHEP 09 (2012) 133 [arXiv:1205.6805] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    S. Dubovsky and V. Gorbenko, Towards a Theory of the QCD String, JHEP 02 (2016) 022 [arXiv:1511.01908] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    S. Dubovsky, R. Flauger and V. Gorbenko, Evidence from Lattice Data for a New Particle on the Worldsheet of the QCD Flux Tube, Phys. Rev. Lett. 111 (2013) 062006 [arXiv:1301.2325] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    A. Athenodorou and M. Teper, On the mass of the world-sheet ’axion’ in SU(N) gauge theories in 3 + 1 dimensions, Phys. Lett. B 771 (2017) 408 [arXiv:1702.03717] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  40. [40]
    A. Athenodorou, B. Bringoltz and M. Teper, Closed flux tubes and their string description in D = 3 + 1 SU(N) gauge theories, JHEP 02 (2011) 030 [arXiv:1007.4720] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Computation-based Science and Technology Research CenterThe Cyprus InstituteNicosiaCyprus
  2. 2.Rudolf Peierls Centre for Theoretical Physics, Clarendon LaboratoryUniversity of OxfordOxfordU.K.

Personalised recommendations