Advertisement

\( \mathcal{G} \)-structure symmetries and anomalies in (1, 0) non-linear σ-models

  • Xenia de la Ossa
  • Marc-Antoine FisetEmail author
Open Access
Regular Article - Theoretical Physics
  • 16 Downloads

Abstract

A new symmetry of (1, 0) supersymmetric non-linear σ-models in two dimensions with Fermi and mass sectors is introduced. It is a generalisation of the so-called special holonomy W-symmetry of Howe and Papadopoulos associated with structure group reductions of the target space \( \mathrm{\mathcal{M}} \). Our symmetry allows in particular non-trivial flux and instanton-like connections on vector bundles over \( \mathrm{\mathcal{M}} \). We also investigate potential anomalies and show that cohomologically non-trivial terms in the quantum effective action are invariant under a corrected version of our symmetry. Consistency with heterotic supergravity at first order in α′ is manifest and discussed.

Keywords

Anomalies in Field and String Theories Conformal and W Symmetry Sigma Models Superstrings and Heterotic Strings 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    K. Wendland, K3 en route from geometry to conformal field theory, talk given at the 8th Summer School on Geometric, Algebraic and Topological Methods for Quantum Field Theory, July 15–17, Villa de Leyva, Colombia (2015), arXiv:1503.08426 [INSPIRE].
  2. [2]
    R. Blumenhagen, R. Schimmrigk and A. Wisskirchen, (0, 2) mirror symmetry, Nucl. Phys. B 486 (1997) 598 [hep-th/9609167] [INSPIRE].
  3. [3]
    S.L. Shatashvili and C. Vafa, Superstrings and manifold of exceptional holonomy, Selecta Math. 1 (1995) 347 [hep-th/9407025] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    B.S. Acharya, On mirror symmetry for manifolds of exceptional holonomy, Nucl. Phys. B 524 (1998) 269 [hep-th/9707186] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    M.R. Gaberdiel and P. Kaste, Generalized discrete torsion and mirror symmetry for G 2 manifolds, JHEP 08 (2004) 001 [hep-th/0401125] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    I. Melnikov, S. Sethi and E. Sharpe, Recent developments in (0, 2) mirror symmetry, SIGMA 8 (2012) 068 [arXiv:1209.1134] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  7. [7]
    A.P. Braun and M. Del Zotto, Mirror symmetry for G 2 -manifolds: twisted connected sums and dual tops, JHEP 05 (2017) 080 [arXiv:1701.05202] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  8. [8]
    A.P. Braun and M. Del Zotto, Towards generalized mirror symmetry for twisted connected sum G 2 manifolds, JHEP 03 (2018) 082 [arXiv:1712.06571] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  9. [9]
    M.-A. Fiset, Superconformal algebras for twisted connected sums and G 2 mirror symmetry, JHEP 12 (2018) 011 [arXiv:1809.06376] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    B. Zumino, Supersymmetry and Kähler manifolds, Phys. Lett. B 87 (1979) 203.ADSCrossRefGoogle Scholar
  11. [11]
    J.M. Figueroa-O’Farrill, A note on the extended superconformal algebras associated with manifolds of exceptional holonomy, Phys. Lett. B 392 (1997) 77 [hep-th/9609113] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    L. Álvarez-Gaumé and D.Z. Freedman, Geometrical structure and ultraviolet finiteness in the supersymmetric σ-model, Commun. Math. Phys. 80 (1981) 443 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    S. Odake, Extension of N = 2 superconformal algebra and Calabi-Yau compactification, Mod. Phys. Lett. A 4 (1989) 557 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    P.S. Howe and G. Papadopoulos, Holonomy groups and W symmetries, Commun. Math. Phys. 151 (1993) 467 [hep-th/9202036] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    P.S. Howe and G. Papadopoulos, A note on holonomy groups and σ-models, Phys. Lett. B 263 (1991) 230 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    P.S. Howe and G. Papadopoulos, W symmetries of a class of d = 2 N = 1 supersymmetric σ-models, Phys. Lett. B 267 (1991) 362 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    C.M. Hull and E. Witten, Supersymmetric σ-models and the heterotic string, Phys. Lett. B 160 (1985) 398 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    L. Álvarez-Gaumé and D.Z. Freedman, Potentials for the supersymmetric nonlinear σ-model, Commun. Math. Phys. 91 (1983) 87 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    C.M. Hull, G. Papadopoulos and P.K. Townsend, Potentials for (p, 0) and (1, 1) supersymmetric σ-models with torsion, Phys. Lett. B 316 (1993) 291 [hep-th/9307013] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    C.M. Hull and P.K. Townsend, World sheet supersymmetry and anomaly cancellation in the heterotic string, Phys. Lett. B 178 (1986) 187 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    M.B. Green and J.H. Schwarz, Anomaly cancellation in supersymmetric D = 10 gauge theory and superstring theory, Phys. Lett. B 149 (1984) 117.ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    N.D. Lambert, Two loop renormalization of massive (p, q) supersymmetric σ-models, Nucl. Phys. B 469 (1996) 68 [hep-th/9510130] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    A. Sen, Equations of motion for the heterotic string theory from the conformal invariance of the σ-model, Phys. Rev. Lett. 55 (1985) 1846 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    L. Álvarez-Gaumé, D.Z. Freedman and S. Mukhi, The background field method and the ultraviolet structure of the supersymmetric nonlinear σ-model, Annals Phys. 134 (1981) 85 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    G. Papadopoulos and P.K. Townsend, Solitons in supersymmetric σ-models with torsion, Nucl. Phys. B 444 (1995) 245 [hep-th/9501069] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    E. Witten, σ-models and the ADHM construction of instantons, J. Geom. Phys. 15 (1995) 215 [hep-th/9410052] [INSPIRE].
  27. [27]
    P.S. Howe and G. Papadopoulos, Further remarks on the geometry of two-dimensional nonlinear σ models, Class. Quant. Grav. 5 (1988) 1647 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    I.V. Melnikov, R. Minasian and S. Sethi, Spacetime supersymmetry in low-dimensional perturbative heterotic compactifications, Fortsch. Phys. 66 (2018) 1800027 [arXiv:1707.04613] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    M.-A. Fiset, C. Quigley and E.E. Svanes, Marginal deformations of heterotic G 2 σ-models, JHEP 02 (2018) 052 [arXiv:1710.06865] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  30. [30]
    M. Günaydin and H. Nicolai, Seven-dimensional octonionic Yang-Mills instanton and its extension to an heterotic string soliton, Phys. Lett. B 351 (1995) 169 [hep-th/9502009] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    J.P. Gauntlett, N. Kim, D. Martelli and D. Waldram, Five-branes wrapped on SLAG three cycles and related geometry, JHEP 11 (2001) 018 [hep-th/0110034] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    T. Friedrich and S. Ivanov, Parallel spinors and connections with skew symmetric torsion in string theory, Asian J. Math. 6 (2002) 303 [math/0102142].
  33. [33]
    T. Friedrich and S. Ivanov, Killing spinor equations in dimension 7 and geometry of integrable G 2 manifolds, J. Geom. Phys. 48 (2003) 1 [math/0112201] [INSPIRE].
  34. [34]
    J.P. Gauntlett, D. Martelli and D. Waldram, Superstrings with intrinsic torsion, Phys. Rev. D 69 (2004) 086002 [hep-th/0302158] [INSPIRE].ADSMathSciNetGoogle Scholar
  35. [35]
    P. Ivanov and S. Ivanov, SU(3) instantons and G 2 , Spin(7) heterotic string solitons, Commun. Math. Phys. 259 (2005) 79 [math/0312094] [INSPIRE].
  36. [36]
    S. Ivanov, Connection with torsion, parallel spinors and geometry of Spin(7) manifolds, math/0111216.
  37. [37]
    C.M. Hull, Compactifications of the heterotic superstring, Phys. Lett. B 178 (1986) 357 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    A. Strominger, Superstrings with torsion, Nucl. Phys. B 274 (1986) 253 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    T. Banks, L.J. Dixon, D. Friedan and E.J. Martinec, Phenomenology and conformal field theory or can string theory predict the weak mixing angle?, Nucl. Phys. B 299 (1988) 613 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    R.L. Bryant, Some remarks on G(2)-structures, math/0305124.
  41. [41]
    J.-M. Bismut, A local index theorem for non-Kähler manifolds, Math. Ann. 284 (1989) 681.MathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    S. Karigiannis, Deformations of G 2 and Spin(7) structures, Canad. J. Math. 57 (2005) 1012.MathSciNetCrossRefzbMATHGoogle Scholar
  43. [43]
    D. Harland and C. Nolle, Instantons and Killing spinors, JHEP 03 (2012) 082 [arXiv:1109.3552] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    S. Ivanov, Heterotic supersymmetry, anomaly cancellation and equations of motion, Phys. Lett. B 685 (2010) 190 [arXiv:0908.2927] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  45. [45]
    P.S. Howe, G. Papadopoulos and K.S. Stelle, The background field method and the nonlinear σ model, Nucl. Phys. B 296 (1988) 26 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  46. [46]
    C.M. Hull, Lectures on nonlinear sigma models and strings, talk given at the NATO Advanced Research Workshop on Superfield Theories, July 25–August 6, Vancouver, Canada (1986).Google Scholar
  47. [47]
    P.S. Howe and V. Stojevic, On the symmetries of special holonomy σ-models, JHEP 12 (2006) 045 [hep-th/0606270] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  48. [48]
    B.S. DeWitt, Quantum theory of gravity. 3. Applications of the covariant theory, Phys. Rev. 162 (1967) 1239 [INSPIRE].
  49. [49]
    J. Honerkamp, Chiral multiloops, Nucl. Phys. B 36 (1972) 130 [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    E. Braaten, T.L. Curtright and C.K. Zachos, Torsion and geometrostasis in nonlinear σ-models, Nucl. Phys. B 260 (1985) 630 [Erratum ibid. B 266 (1986) 748] [INSPIRE].
  51. [51]
    J.C. Henty, C.M. Hull and P.K. Townsend, World sheet supergravity anomaly cancellation for the heterotic string in a ten-dimensional supergravity background, Phys. Lett. B 185 (1987) 73 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  52. [52]
    S.J. Gates Jr., M.T. Grisaru, L. Mezincescu and P.K. Townsend, (1, 0) supergraphity, Nucl. Phys. B 286 (1987) 1 [INSPIRE].
  53. [53]
    G.W. Moore and P.C. Nelson, Anomalies in nonlinear σ models, Phys. Rev. Lett. 53 (1984) 1519 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  54. [54]
    L. Álvarez-Gaumé and P.H. Ginsparg, Geometry anomalies, Nucl. Phys. B 262 (1985) 439 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  55. [55]
    J. Bagger, D. Nemeschansky and S. Yankielowicz, Anomaly constraints on nonlinear σ-models, Nucl. Phys. B 262 (1985) 478 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  56. [56]
    A. Sen, Local gauge and lorentz invariance of the heterotic string theory, Phys. Lett. B 166 (1986) 300.ADSMathSciNetCrossRefGoogle Scholar
  57. [57]
    A. Sen, Superspace analysis of local Lorentz and gauge anomalies in the heterotic string theory, Phys. Lett. B 174 (1986) 277 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  58. [58]
    J. Polchinski, String theory. Volume 1: an introduction to the bosonic string, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge U.K. (2007).Google Scholar
  59. [59]
    C.M. Hull, Anomalies, ambiguities and superstrings, Phys. Lett. B 167 (1986) 51.ADSMathSciNetCrossRefGoogle Scholar
  60. [60]
    C.M. Hull and P.K. Townsend, String effective actions from σ model conformal anomalies, Nucl. Phys. B 301 (1988) 197 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  61. [61]
    C.M. Hull and P.K. Townsend, Finiteness and conformal invariance in nonlinear σ models, Nucl. Phys. B 274 (1986) 349 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  62. [62]
    C.M. Hull, σ model β-functions and string compactifications, Nucl. Phys. B 267 (1986) 266 [INSPIRE].
  63. [63]
    C.M. Hull and P.K. Townsend, The two loop β-function for σ models with torsion, Phys. Lett. B 191 (1987) 115 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  64. [64]
    C.G. Callan Jr. and L. Thorlacius, Sigma models and string theory, talk given at the Theoretical Advanced Study Institute in Elementary Particle Physics: Particles, Strings and Supernovae (TASI88), June 5–July 1, Providence, Rhode Island, U.S.A. (1989).Google Scholar
  65. [65]
    C.G. Callan Jr., E.J. Martinec, M.J. Perry and D. Friedan, Strings in background fields, Nucl. Phys. B 262 (1985) 593 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  66. [66]
    D. Friedan, Nonlinear models in two epsilon dimensions, Phys. Rev. Lett. 45 (1980) 1057 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  67. [67]
    N.E. Mavromatos and J.L. Miramontes, Zamolodchikov’s C theorem and string effective actions, Phys. Lett. B 212 (1988) 33 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  68. [68]
    J. Polchinski, Scale and conformal invariance in quantum field theory, Nucl. Phys. B 303 (1988) 226 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  69. [69]
    A.B. Zamolodchikov, Irreversibility of the flux of the renormalization group in a 2D field theory, JETP Lett. 43 (1986) 730 [INSPIRE].ADSMathSciNetGoogle Scholar
  70. [70]
    K.-j. Hamada, J. Kodaira and J. Saito, Heterotic string in background gauge fields, Nucl. Phys. B 297 (1988) 637 [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    G. Grignani and M. Mintchev, The effect of gauge and lorentz anomalies on the β-functions of heterotic σ models, Nucl. Phys. B 302 (1988) 330 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  72. [72]
    A.P. Foakes, N. Mohammedi and D.A. Ross, Three loop β-functions for the superstring and heterotic string, Nucl. Phys. B 310 (1988) 335 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  73. [73]
    U. Ellwanger, J. Fuchs and M.G. Schmidt, The heterotic σ model with background gauge fields, Nucl. Phys. B 314 (1989) 175 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  74. [74]
    I.V. Melnikov and E. Sharpe, On marginal deformations of (0, 2) non-linear σ-models, Phys. Lett. B 705 (2011) 529 [arXiv:1110.1886] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  75. [75]
    X. de la Ossa and E.E. Svanes, Holomorphic bundles and the moduli space of N = 1 supersymmetric heterotic compactifications, JHEP 10 (2014) 123 [arXiv:1402.1725] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  76. [76]
    L.B. Anderson, J. Gray and E. Sharpe, Algebroids, heterotic moduli spaces and the Strominger system, JHEP 07 (2014) 037 [arXiv:1402.1532] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    M. Garcia-Fernandez, R. Rubio and C. Tipler, Infinitesimal moduli for the Strominger system and Killing spinors in generalized geometry, arXiv:1503.07562 [INSPIRE].
  78. [78]
    A. Clarke, M. Garcia-Fernandez and C. Tipler, Moduli of G 2 structures and the Strominger system in dimension 7, arXiv:1607.01219 [INSPIRE].
  79. [79]
    X. de la Ossa, M. Larfors and E.E. Svanes, Infinitesimal moduli of G 2 holonomy manifolds with instanton bundles, JHEP 11 (2016) 016 [arXiv:1607.03473] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  80. [80]
    X. de la Ossa, M. Larfors and E.E. Svanes, The infinitesimal moduli space of heterotic G 2 systems, Commun. Math. Phys. 360 (2018) 727 [arXiv:1704.08717] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  81. [81]
    A. Ashmore et al., Finite deformations from a heterotic superpotential: holomorphic Chern-Simons and an L algebra, JHEP 10 (2018) 179 [arXiv:1806.08367] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  82. [82]
    M. Garcia-Fernandez, R. Rubio and C. Tipler, Holomorphic string algebroids, arXiv:1807.10329 [INSPIRE].
  83. [83]
    J. Ekstrand, R. Heluani, J. Kallen and M. Zabzine, Non-linear σ-models via the chiral de Rham complex, Adv. Theor. Math. Phys. 13 (2009) 1221 [arXiv:0905.4447] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  84. [84]
    J. Ekstrand, R. Heluani, J. Kallen and M. Zabzine, Chiral de Rham complex on Riemannian manifolds and special holonomy, Commun. Math. Phys. 318 (2013) 575 [arXiv:1003.4388] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  85. [85]
    F. Malikov, V. Schechtman and A. Vaintrob, Chiral de Rham complex, Commun. Math. Phys. 204 (1999) 439 [math/9803041] [INSPIRE].
  86. [86]
    J. McOrist, The revival of (0,2) linear σ-models, Int. J. Mod. Phys. A 26 (2011) 1 [arXiv:1010.4667] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  87. [87]
    C. Closset, W. Gu, B. Jia and E. Sharpe, Localization of twisted \( \mathcal{N} \) = (0, 2) gauged linear σ-models in two dimensions, JHEP 03 (2016) 070 [arXiv:1512.08058] [INSPIRE].ADSCrossRefGoogle Scholar
  88. [88]
    D.J. Gross and E. Witten, Superstring modifications of Einstein’s equations, Nucl. Phys. B 277 (1986) 1 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  89. [89]
    M.T. Grisaru, A.E.M. van de Ven and D. Zanon, Four Loop β-function for the N = 1 and N = 2 Supersymmetric Nonlinear σ-model in Two-Dimensions, Phys. Lett. B 173 (1986) 423 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  90. [90]
    P. Candelas et al., Higher order corrections to supersymmetry and compactifications of the heterotic string, Phys. Lett. B 177 (1986) 341 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  91. [91]
    D. Nemeschansky and A. Sen, Conformal invariance of supersymmetric σ models on Calabi-Yau manifolds, Phys. Lett. B 178 (1986) 365 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  92. [92]
    I.T. Jardine and C. Quigley, Conformal invariance of (0, 2) σ-models on Calabi-Yau manifolds, JHEP 03 (2018) 090 [arXiv:1801.04336] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  93. [93]
    K. Becker, D. Robbins and E. Witten, The αexpansion on a compact manifold of exceptional holonomy, JHEP 06 (2014) 051 [arXiv:1404.2460] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Mathematical InstituteUniversity of OxfordOxfordU.K.

Personalised recommendations